

1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.4.3

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.6

1.6.1

1.6.1.1

1.6.1.2

1.6.2

1.6.2.1

1.6.3

1.6.3.1

1.6.3.2

1.6.4

1.6.4.1

1.6.4.2

1.6.4.3

1.6.4.4

1.6.5

1.6.5.1

1.6.6

1.7

1.7.1

1.7.2

1.7.2.1

1.7.2.2

1.7.2.3

1.7.2.4

1.7.3

1.7.3.1

1.7.4

Table	of	Contents
Package	Developer	Guide

Release	Notes

Breaking	Changes

Getting	Started

System	Requirements

Prepare	Envrionment

Your	First	Package

Synology	Toolkit

Build	Stage

Pack	Stage

Sign	Package	(only	for	DSM6.X)

References

Synology	Package

INFO

Necessary	Fields

Optional	Fields

package.tgz

UI	files

scripts

Script	Environment	Variables

Script	Messages

conf

privilege

resource

PKG_DEPS

PKG_CONX

wizard

WIZARD_UIFILES	7.2.2

LICENSE

Synology	DSM	Integration

FHS

Desktop	Application

Application	Config

Application	Help

Application	I18N

Application	Authentication

Privilege

Privilege	Config

Resource

2

1.7.4.1

1.7.4.2

1.7.4.3

1.7.4.4

1.7.4.4.1

1.7.4.4.2

1.7.4.4.3

1.7.4.4.4

1.7.4.4.5

1.7.4.4.6

1.7.4.4.7

1.7.4.4.8

1.7.4.4.9

1.7.4.4.10

1.7.4.4.11

1.7.4.4.12

1.7.4.4.13

1.7.4.4.14

1.7.5

1.7.6

1.8

1.8.1

1.8.2

1.8.3

1.8.4

1.9

1.9.1

1.9.2

1.9.3

1.10

1.11

1.11.1

1.11.2

1.11.3

1.12

1.13

1.13.1

1.13.2

1.13.3

1.13.4

1.13.5

1.13.6

Resource	Config

Resource	Timing

Resource	Update

Resource	List

/usr/local	linker

Apache	2.2	Config

Data	Share

Docker

Docker	Project

Index	DB

Maria	DB

PHP	INI

Port	Config

Systemd	User	Unit

System	Notification

Syslog	Config

Web	Service

Web	Config

Port

Monitor

Package	Examples

Open	Source	Tool:	tmux

Open	Source	Tool:	nmap

Docker	package

Web	Package:	WordPress

Publish	Synology	Packages

Get	Started	with	Publishing

Submitting	the	Package	for	Approval

Responding	to	User	Issues

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

Appendix	B:	Compile	Applications	Manually

Download	DSM	Tool	Chain

Compile

Compile	Open	Source	Projects

Appendix	C:	Publication	Review	&	Verification

Appendix	D:	UI	Framework

Application

Button

Checkbox

Form

Input

Radio

3

1.13.7

1.13.8

Rich	Text

Select

4

Synology	DSM	7.2.2	Developer	Guide
Synology	offers	this	developer	guide	with	instructions	on	how	to	develop	packages	on	Synology	NAS	products.	You	should	have	basic
understanding	of	Linux	programming.	With	this	guide,	you	can	familiarize	yourself	with	the	following	procedures:

Compile	programs	to	run	on	a	Synology	NAS.
Integrate	packages	with	the	Synology	DiskStation	Manager	(DSM).
Integrate	packages	with	the	DSM	help.
Integrate	packages	with	the	DSM	desktop	application.
Integrate	packages	with	the	DSM	firewall.
Integrate	packages	with	the	DSM	resource	monitor.

THIS	DOCUMENT	CONTAINS	PROPRIETARY	TECHNICAL	INFORMATION	WHICH	IS	THE	PROPERTY	OF	SYNOLOGY
INCORPORATED	AND	SHALL	NOT	BE	REPRODUCED,	COPIED,	OR	USED	AS	THE	BASIS	FOR	DESIGN,
MANUFACTURING,	OR	SALE	OF	APPARATUS	WITHOUT	WRITTEN	PERMISSION	OF	SYNOLOGY	INCORPORATED

Copyright
Synology	Inc.	®	2022	Synology	Inc.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted,	in	any	form	or	by	any	means,	mechanical,
electronic,	photocopying,	recording,	or	otherwise,	without	prior	written	permission	of	Synology	Inc.,	with	the	following	exceptions:
Any	person	is	hereby	authorized	to	store	documentation	on	a	single	computer	for	personal	use	only	and	to	print	copies	of
documentation	for	personal	use	provided	that	the	documentation	contains	Synology’s	copyright	notice.

The	Synology	logo	is	a	trademark	of	Synology	Inc.

No	licenses,	express	or	implied,	are	granted	with	respect	to	any	of	the	technology	described	in	this	document.	Synology	retains	all
intellectual	property	rights	associated	with	the	technology	described	in	this	document.	This	document	is	intended	to	assist	application
developers	to	develop	applications	only	for	Synology-labeled	computers.

Every	effort	has	been	made	to	ensure	that	the	information	in	this	document	is	accurate.	Synology	is	not	responsible	for	typographical
errors.

Synology	Inc.	9F.,	No.1,	Yuandong	Rd.,	New	Taipei	City	22063,	Taiwan

Synology	and	the	Synology	logo	are	trademarks	of	Synology	Inc.,	registered	in	the	United	States	and	other	countries.

Marvell	is	registered	trademarks	of	Marvell	Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Freescale	is	registered	trademarks	of	Freescale.	Intel	and	Atom	is	registered	trademarks	of	Intel.

Semiconductor,	Inc.	or	its	subsidiaries	in	the	United	States	and	other	countries.

Other	products	and	company	names	mentioned	herein	are	trademarks	of	their	respective	holders.

Even	though	Synology	has	reviewed	this	document,	SYNOLOGY	MAKES	NO	WARRANTY	OR	REPRESENTATION,	EITHER
EXPRESS	OR	IMPLIED,	WITH	RESPECT	TO	THIS	DOCUMENT,	ITS	QUALITY,	ACCURACY,	MERCHANTABILITY,	OR
FITNESS	FOR	A	PARTICULAR	PURPOSE.	AS	A	RESULT,	THIS	DOCUMENT	IS	PROVIDED	“AS	IS,”	AND	YOU,	THE
READER,	ARE	ASSUMING	THE	ENTIRE	RISK	AS	TO	ITS	QUALITY	AND	ACCURACY.	IN	NO	EVENT	WILL	SYNOLOGY
BE	LIABLE	FOR	DIRECT,	INDIRECT,	SPECIAL,	INCIDENTAL,	OR	CONSEQUENTIAL	DAMAGES	RESULTING	FROM
ANY	DEFECT	OR	INACCURACY	IN	THIS	DOCUMENT,	even	if	advised	of	the	possibility	of	such	damages.

THE	WARRANTY	AND	REMEDIES	SET	FORTH	ABOVE	ARE	EXCLUSIVE	AND	IN	LIEU	OF	ALL	OTHERS,	ORAL	OR
WRITTEN,	EXPRESS	OR	IMPLIED.	No	Synology	dealer,	agent,	or	employee	is	authorized	to	make	any	modification,	extension,	or
addition	to	this	warranty.

Package	Developer	Guide

5

Some	states	do	not	allow	the	exclusion	or	limitation	of	implied	warranties	or	liability	for	incidental	or	consequential	damages,	so	the
above	limitation	or	exclusion	may	not	apply	to	you.	This	warranty	gives	you	specific	legal	rights,	and	you	may	also	have	other	rights
which	vary	from	state	to	state.

Package	Developer	Guide

6

Synology	Package	Framework	7.2

Notes

1.	Package	Framework

Implementing	a	wizard	using	the	Vue.js	framework	and	compile	by	owner

Synology	Package	Framework	7.0

Breaking	Changes

Find	more	details	please	refer	to	breaking	changes	Breaking	Changes	In	7.0.

Notes

1.	Package	Framework

Force	lower	privilege	for	package
Force	some	INFO	fields	to	be	neccessary
Remove	package	signing
Remove		run-as	system		from	privilege
Change	default	home	path	from		target		to		home	
Change		PACKAGE_ICON.PNG		from	72x72	to	64x64
Change	FHS	directory	owner	according	to	privilege	settings
Change	package	log	location	to		/var/log/packages/[package_name].log		and		/var/log/synopkg.log	
Consider		prestart		script	on	bootup

2.	Package	Center

Remove	keyring
Remove	trust	level

3.	Commands

	synopkg	start		starts	the	package	with	its	dependees
	synopkg	install		checks	if	the	package	can	be	installed

New	Features

1.	SDK	Plugin

Add		package_install		module
Add		package_uninstall		module
Add		package_start		module
Add		package_stop		module

2.	Package	Framework

Release	Notes

7

Add		var		directory	for	FHS
Add		tmp		directory	for	FHS
Add		home		directory	for	FHS
Add		prereplace		script
Add		postreplace		script
Add		install_on_cold_storage		to	INFO

Add		exclude_model		to	INFO

Add		dsmapppage		to	INFO
Add		use_deprecated_replace_mechanism		to	INFO
Add	multiple	directories	support	for		dsmuidir		in	INFO

3.	Resource	Worker

Add		strong-dependence		to	data-share	worker	for	package	who	needs	auto	start	after	encrypted	share	mounted
Add		systemd-user-unit		worker

Enhancements

1.	Package	Framework

Restart	package	after	repaired	according	to	its	original	state
Cannot	continue	to	install	package	if	spk	checksum	is	incorrect

2.	Package	Center

Be	able	to	start	a	package	with	its	dependees
Be	able	to	stop	a	package	with	its	dependers
Be	able	to	uninstall	a	package	with	its	dependers
Be	able	to	repair	start-failed	package	via	repair	button
Community	sources	should	have	same	name	/	source

Release	Notes

8

Breaking	Changes	in	7.0
In	DSM7.0	,	there’re	some	breaking	changes	in	package	frameworkPackage	Center	and	commands.	Also	see	 Release	Notes.

Package	Framework	Changes

1.	Force	lower	privilege	for	package

All	packages	should	provide		conf/privilege		with		package		in		run-as		explicitly.	Any	privileged	operation	should	be	accomplished	via
resource	worker.

2.	Force	some	INFO	fields	to	be	neccessary

Any	package	should	have		package	,		version	,		os_min_ver	,		description	,		arch		and		maintainer		fields.	Futhermore,	the	value	of
	os_min_ver		should	be	at	least		7.0-40000		or	you	cannot	install	the	package	correctly.

3.	Remove	package	signing	mechanism

Packages	are	no	longer	able	to	do	signing	in	packing	stage.

4.	Remove		run-as	system		from	privilege

Packages	will	not	be	able	to	use	run-as	system	in		conf/privilege	.	Instead,	all	packages	should	run	as		package	.

5.	Change	default	home	path	from		target		to		home	

The	home	directory	of	package	is	changed	from		/var/packages/[package_name]/target		to		/var/packages/[package_name]/home		and	its
mode	will	be	0700.

6.	Change		PACKAGE_ICON.PNG		from	72x72	to	64x64

Package	should	have	PACKAGE_ICON.PNG	in	64x64	above	7.0.

7.	Change	FHS	directory	owner	according	to	privilege	settings

FHS	directories	such	as		target		will	have	new	privilege	settings	according	to		conf/privilege	.

8.	Change	package	log	location	to		/var/log/packages/[package_name].log		and
	/var/log/synopkg.log	

Package	operation	log	is	still	at		/var/log/synopkg.log		but	control	script	log	will	be	at		/var/log/packages/[package_name].log	.	Besides,
when	you	are	developing	a	package,	you	should	always	pay	attention	to	the	content	of		/var/log/messages		to	check	if	there	are	any
warning	or	error.

9.	Consider		prestart		script	on	bootup

The		prestart		script	will	run	on	bootup	to	check	if	a	package	can	be	started.

Package	Center	Changes

1.	Remove	keyring	&&	Remove	trust	level

Breaking	Changes

9

User	are	no	longer	be	able	to	add	/	remove	keyrings	on	package	center	since	we	have	deprecated	the	codesign	mechanism	of	spk.
Similarly,	there	will	be	no	trust	level	settings	for	user	to	choose.	Any	non-synology	package	will	get	alert	on	installation.

Command	Changes

1.		synopkg	start		starts	a	package	with	its	dependees

If	A	depends	on	B,	run		synopkg	start	A		will	also	start	B	when	B	is	not	started.

2.		synopkg	install		checks	if	package	can	be	installed

The		synopkg	install		command	will	have	same	constraints	as	UI	installation.

Breaking	Changes

10

Getting	Started
Getting	started	to	learn	how	to	easily	build	packages	just	the	way	you	like!

What	can	packages	do	?

access	DSM	API
access	owned	data	share	folder
integrate	desktop	application
integrate	help	documents
integrate	firewall	rules
integrate	resource	monitor
define	lifecycle	behaviour
define	relationship	between	packages
define	identity	privilege

How	to	develop	packages	?

To	develop	packages,	you	first	need	to	know	the	entire	working	flow:

1.	 Prepare	a	NAS

You	can	choose	one	at	our	official	site	and	buy	it	from	local	synology	partner.	It	is	recommended	to	take	one	from	the	Plus	Series.

2.	 Prepare	environments	for	local	development

Since	our	NAS	is	not	always	in		x86		or		x86_64		architecture,	we	should	prepare	corresponding	environment	to	our	NAS	(for	cross
compiling	if	you	are	developing	in	C/C++).	We	provide	tons	of	tools	for	creating	different	development	environments	of	our	NAS
in	an	easy	way.

3.	 Decide	what	you	want	to	make

If	you	want	to	develop	an	application	in		Node.js	,	you	can	make	your	package	depend	on	our	official		Node.js		package.	If	you
want	to	develop	in		PHP	,	you	can	still	make	your	package	depend	on		PHP		package.	We	have	already	provided		Node.js	,		PHP	,
	Perl	,		Python	,		Java		packages	for	langugage	run	time	on	DSM.

Getting	Started

11

https://www.synology.com/products
https://www.synology.com/wheretobuy/locate_synology_partner

You	can	make	great	packages	by	leveraging	our	Package	Framework	to	have	stable,	controllable	and	power	saving	properties.	We
provide	complete	toolkit	for	cross	compiling	and	packing	so	you	can	also	develop	in	an	easy	way.

4.	 Decide	whether	to	publish	packages	onto	official	Synology	Package	Center

Begin	to	develop	packages

In	later	topics,	we	will	take	a	closer	look	at	development.	You	can	find	articles	such	as

System	Requirement
Prepare	Environment
Your	First	Package

Getting	Started

12

System	Requirements

Toolkit	Requirements

64bit	generic	linux	environment	with	root	permission	(e.g.,	Ubuntu	18.04	LTS)
bash	(>=	4.1.5)
python	(>=	2.7.3)

Please	DO	NOT	install	toolkit	on	Synology	NAS 	as	your	development	environment.	NAS	is	specialized	for	storage,	and	not	for
generic	developing	purpose.	Instead,	you	can	install		Docker		package	on	NAS	then	setup	a	generic	linux	container	to	install	the	toolkit.

Runtime	Requirements
If	your	package	is	for	DSM6	then	you	should	have	a	DSM6	NAS.
If	your	package	is	for	DSM7	then	you	should	have	a	DSM7	NAS.

Package	for	DSM6	is	not	compatible	with	DSM7

Install	Development	Token	(For	collaborative	partners	only)

If	you	are	developing	a	package	with	root	privilege,	you	are	not	able	to	install	that	package	unless	it	is	signed	by	synology.	To	deal	with
this	security	restriction,	we	provide	a	development	token	to	bypass	the	signing	restriction.

1.	 Open	your	DSM	web	UI,	go	to	Support	Center	>	Support	Services.
2.	 Press	"Generate	Logs"	button	and	you	will	get	a	file	named		debug.dat	.
3.	 Send	the		debug.dat		to	Synology.
4.	 The	Synology	will	sign	a	token	and	send	it	to	you.
5.	 Put	the	development	token	to		/var/packages/syno_dev_token		on	the	NAS	where	the		debug.dat		generated.

If	everything	works	fine,	your	unsigned	package	will	be	accepted	for	installation.	If	not,	you	would	receive	the	error	message:

Failed	to	install.	The	package	should	run	with	a	lower	privilege	level.	Please	contact	the	package	developer	to	modify	the	privilege
settings.

If	you	believe	you	are	doing	it	correct	and	the	problem	persists,	please	contact	us	for	help.

The	development	token	is	only	valid	for	the	NAS	generating	the		debug.dat	.	Installing	the	token	to	another	NAS	does	not	make	the
bypass	work.

System	Requirements

13

Prepare	Environment

Install	Toolkit

Toolkit	Installation:

You	need	to	clone	the	front-end	scripts	from	this	link.	We	will	use		/toolkit		as	toolkit	base	in	this	document	from	now	on.

apt-get	install	git

mkdir	-p	/toolkit

cd	/toolkit

git	clone	https://github.com/SynologyOpenSource/pkgscripts-ng

Then	you	need	to	install	a	few	tools	to	make	the	built	tool	work:

apt-get	install	cifs-utils	\

				python	\

				python-pip	\

				python3	\

				python3-pip

At	this	moment,	you	can	find	toolkit	files	as	the	follows:

/toolkit

├──	pkgscripts-ng/

│			├──	include/

│			├──	EnvDeploy				(deployment	tool	for	chroot	environment)

│			└──	PkgCreate.py	(build	tool	for	package)

└──	build_env/							(directory	to	store	chroot	environments)

Deploy	Chroot	Environment	For	Different	NAS	Target
For	faster	development,	we	have	prepared	several	build	environments	of	different	architectures	which	contain	some	pre-built	projects
whose	executable	binaries	or	shared	libraries	are	built	in	DSM,	for	example,		zlib	,		libxml2		and	so	on.

You	can	use		EnvDeploy		to	deploy	corresponding	environment	of	your	NAS.	For	example,	if	there	is	a	NAS	in		avoton		architecture,	it	is
possible	to	use	following	commands	to	deploy	a	environment	for		avoton	:

cd	/toolkit/pkgscripts-ng/

git	checkout	DSM7.2

./EnvDeploy	-v	7.2	-p	avoton	#	for	DSM7.2.2

It	is	possible	to	download	environment	tarballs	manually.	You	have	to	put		base_env-{version}.txz	,		ds.{platform}-{version}.dev.txz	
and		ds.{platform}-{version}.env.txz		into		toolkit/toolkit_tarballs	.

/toolkit

├──	pkgscripts-ng/

└──	toolkit_tarballs/

				├──	base_env-7.2.txz

				├──	ds.avoton-7.2.dev.txz

				└──	ds.avoton-7.2.env.txz

cd	/toolkit/pkgscripts-ng/

Prepare	Envrionment

14

https://github.com/SynologyOpenSource/pkgscripts-ng/tree/DSM7.2
https://www.synology.com/knowledgebase/DSM/tutorial/Compatibility_Peripherals/What_kind_of_CPU_does_my_NAS_have

./EnvDeploy	-v	7.2	-p	avoton	-D	#	-D	implies	no	download

As	mentioned	before,	the	deployed	environment	contains	some	pre-built	libraries	and	headers	which	can	be	found	under	cross	gcc
sysroot.	Sysroot	is	the	default	search	path	of	compiler.	If	gcc	cannot	find	header	or	library	from	the	given	path,	it	will	then	search
	sysroot/usr/{lib,include}	.

/toolkit

├──	pkgscripts-ng/

│			├──	include/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	build_env/

				├──	ds.avoton-7.2/

				└──	ds.avoton-6.2/

								└──	usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/

Available	Platforms

You	can	use	one	of	the	following	commands	to	show	available	platforms.	If		-v		is	not	given,	available	platforms	for	all	versions	will	be
listed.

./EnvDeploy	-v	7.2	--list

./EnvDeploy	-v	7.2	--info	platform

You	may	use	any	toolkit	that	belong	to	the	same	platform	family	to	create	spk	for	all	platforms	within	the	same	platform	family.	e.g.
you	may	use	the	toolkit	for	braswell	to	create	package	runs	on	all	x86_64	compatible	platforms.	For	platform	family,	please	check
Platform	and	Arch	Value	Mapping	Table.

Update	Environment

Use		EnvDeploy		again	to	update	the	environment.	For	example,	you	can	update	avoton	for	DSM	7.2.2	as	follows.

./EnvDeploy	-v	7.2	-p	avoton

Remove	Environment

To	remove	a	environment,	you	first	need	to	unmount	the		/proc		folder	then	remove	the	environment	folder.	The	following	commands
illustrate	how	to	remove	an	environment	with	version	7.2	and	platform	avoton.

umount	/toolkit/build_env/ds.avoton-7.2/proc

rm	-rf	/toolkit/build_env/ds.avoton-7.2

Prepare	Envrionment

15

Your	First	Package
Make	sure	you	have	prepared	the	development	environment	for	your	NAS.

Download	the	template	package

You	can	download	our	template	package	from	https://github.com/SynologyOpenSource/ExamplePackages	and	place	the
	ExamplePackages/ExamplePackage		directory	at		/toolkit/source/ExamplePackage	.

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──ExamplePackage/

								├──	examplePkg.c

								├──	INFO.sh

								├──	Makefile

								├──	PACKAGE_ICON.PNG

								├──	PACKAGE_ICON_256.PNG

								├──	scripts/

								│			├──	postinst

								│			├──	postuninst

								│			├──	postupgrade

								│			├──	postreplace

								│			├──	preinst

								│			├──	preuninst

								│			├──	preupgrade

								│			├──	prereplace

								│			└──	start-stop-status

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Configure	Build	Configs

The	steps	to	build	package	and	pack	package	are	configured	under		${project_path}/SynoBuildConf/	.	You	can	see	three	files:

depends:	configure	dependencies	between	projects
build:	configure	steps	to	build	package
install:	configure	steps	to	pack	package	into		.spk		file

This	example	will	echo	some	messages	by	a	program	written	in	C	language,	so	it	is	neccessary	to	compile	program	in	build	stage.	We
apply		Makefile		in	this	example	to	help	us	doing	cross	compilation.

We	do	not	concern	what	you	do	in		build		configuration	so	that	it	can	even	do	nothing.	The	build	system	will	just	chroot	into
environment	then	call	the	corresponding		build	,		install		script	according	to	the	commands.

Configure	Properties

The	package	information	and	its	behavior	are	controlled	by		INFO.sh		which	will	be	translated	into		INFO		file	in		install	.

#!/bin/bash

#	INFO.sh

source	/pkgscripts/include/pkg_util.sh

Your	First	Package

16

https://github.com/SynologyOpenSource/ExamplePackages

package="ExamplePackage"

version="1.0.0000"

os_min_ver="7.0-40000"

displayname="ExamplePackage	Package"

description="this	is	an	example	package"

arch="$(pkg_get_unified_platform)"

maintainer="Synology	Inc."

pkg_dump_info

Configure	Lifecycle	Behaviour
The	package	control	scripts	can	be	found	at		${project_path}/scripts/	.	You	can	control	the	behaviour	in	each	stage	such	as	calling	a
	examplePkg		program	on	package	start	/	stop.

#!/bin/sh

#	scripts/start-stop-status

case	$1	in

				start)

								examplePkg	"Start"

								echo	"Hello	World"	>	$SYNOPKG_TEMP_LOGFILE

								exit	0

				;;

				stop)

								examplePkg	"Stop"

								echo	"Hello	World"	>	$SYNOPKG_TEMP_LOGFILE

								exit	0

				;;

				status)

								exit	0

				;;

esac

Write	a	program	and	configure	its	compilation	and	installation
It	is	common	to	bring	compiled	program	into	DSM	via	package.	You	can	just	write	your	program	in	C	and	add	a	Makefile	to	compile
your	programs.

//	examplePkg.c

#include	<sys/sysinfo.h>

#include	<syslog.h>

#include	<stdio.h>

int	main(int	argc,	char**	argv)	{

				struct	sysinfo	info;

				int	ret;

				ret	=	sysinfo(&info);

				if	(ret	!=	0)	{

								syslog(LOG_SYSLOG,	"Failed	to	get	info\n");

								return	-1;

				}

				syslog(LOG_SYSLOG,	"[ExamplePkg]	%s	sample	package	...",	argv[1]);

				syslog(LOG_SYSLOG,	"[ExamplePkg]	Total	RAM:	%u\n",	(unsigned	int)	info.totalram);

				syslog(LOG_SYSLOG,	"[ExamplePkg]	Free	RAM:	%u\n",	(unsigned	int)	info.freeram);

				return	0;

}

#	Makefile

include	/env.mak

EXEC=	examplePkg

OBJS=	examplePkg.o

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$<	-o	$@	$(LDFLAGS)

install:	$(EXEC)

Your	First	Package

17

				mkdir	-p	$(DESTDIR)/usr/bin/

				install	$<	$(DESTDIR)/usr/bin/

clean:

				rm	-rf	*.o	$(EXEC)

Any	additional	files	(e.g.,	compiled	program,	media	resources)	should	be	packed	into		package.tgz		file	inside		.spk	.	We	provide	several
script	commands	to	do	such	operations.	In	this	example,	we	will	pack	compiled		examplePkg		executable	via		install		build	script.

#		SynoBuildConf/install	(partial)

create_package_tgz()	{

				local	firewere_version=

				local	package_tgz_dir=/tmp/_package_tgz

				local	binary_dir=$package_tgz_dir/usr/bin

				rm	-rf	$package_tgz_dir	&&	mkdir	-p	$package_tgz_dir

				mkdir	-p	$binary_dir

				cp	-av	examplePkg	$binary_dir

				make	install	DESTDIR="$package_tgz_dir"

				pkg_make_package	$package_tgz_dir	"${PKG_DIR}"

}

Build	And	Pack	The	Package

After	you	have	finished	preparing	the	package	source	code,	you	can	use	the	following	commands	to	build	and	pack	the	package	into
	.spk		at		/toolkit/result_spk/${package}-${version}/*.spk	.

cd	/toolkit/pkgscripts-ng/

./PkgCreate.py	-v	7.0	-p	avoton	-c	ExamplePackage

/toolkit/

├──	pkgscripts-ng/

├──	build_env/

│			└──	ds.${platform}-${version}

└──	result_spk/

				└──	${package}-${version}/

								└──	*.spk

Install	And	Test	The	Package
Go	to	DSM	>	Package	Center	>	Manual	Install	then	select	your		.spk		file	to	do	installation.

Once	you	have	installed	and	started	the	package,	you	can	see	its	message	on	UI	and	log	at		/var/log/messages	.

Your	First	Package

18

Read	More

Synology	Toolkit
Synology	Package
Synology	DSM	Integration
Package	Examples

Your	First	Package

19

Synology	Toolkit
In	this	section,	we	will	explain	the	workflow	of	Package	Toolkit.	If	you	want	to	build	a	Synology	Package	without	using	Package
Toolkit,	you	must:

Prepare	a	cross	compile	tool	chain
Prepare	a	build	environment
Prepare	metadata
Compile	source	code
Pack	the	package

Creating	a	package	manually	can	be	very	complex	for	most	developers,	so	we	recommended	using	the	Package	Toolkit	to	make	the
package	creation	process	easier.

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

└──	pkgscripts-ng/

				├──	EnvDeploy

				└──	PkgCreate.py

Create	Package	Workflow:
There	are	two	stages	in	the		PkgCreate.py		package	creation	process:

Build	Stage:	compile	your	project	and	all	dependent	projects	in	the	correct	order.
Pack	Stage:	pack	your	project	into	an		.spk		file

To	create	your		.spk		file	with	PkgCreate.py	properly,	you	need	to	provide	additional	configuration	files	and	build	scripts	to	describe
how	to	build	your	project.	These	files	are	put	in	a	folder	named	“SynoBuildConf”	under	your	project.

	SynoBuildConf/depends	:	defines	the	dependency	of	your	project.	For	further	details,	please	refer	to	Build	Stage
	SynoBuildConf/build	:	specifies	PkgCreate.py	on	how	to	compile	your	project.	For	further	details,	please	refer	to	Build	Stage
	SynoBuildConf/install	:	specifies	PkgCreate.py	on	how	to	pack	your	SPK	file.	For	further	details,	please	refer	to	Pack	Stage
	SynoBuildConf/install-dev	:	similar	to	SynoBuildConf/install,	but	this	will	pack	your		.spk		file	in	chroot	environment	rather	than
general	DSM	system.	For	further	details,	please	refer	to	Compile	Open	Source	Project:	nmap.

Synology	Toolkit

20

Synology	Toolkit

21

Build	Stage:
In	the	Build	Stage,		PkgCreate.py		will	compile	the	project	and	its	dependent	projects.	Please	note	that	in	this	stage,		PkgCreate.py	
depends	on	two	build	scripts	(SynoBuildConf/build		and		SynoBuildConf/depends)	to	get	the	necessary	information.

PkgCreate.py	-v	${version}	-p	${platform}	${project}	#	build	project	in	specific	platform	version

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──${project}/

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Build	Stage	Workflow:

1.	 Based	on	your		SynoBuildConf/depend	,		PkgCreate.py		will	locate	the	target	DSM	version	from	[default]	section.
2.	 	PkgCreate.py		will	resolve	the	projects	you	depend	on.
3.	 Your	project	and	the	dependent	projects	which	are	placed	under		/toolkit/source		will	be	hard-linked	to

	/toolkit/build_env/ds.${platform}/source	.
4.	 Their		SynoBuildConf/build		will	be	executed	in	order	according	to	their	dependency	based	on	each		SynoBuildConf/depend	.
5.	 If	your	project	is	needed	by	other	project	for	cross	compiling,	you	may	add		SynoBuildConf/install-dev		script.		install-dev	

script	will	install	cross	compiled	product	into	platform	chroot.

Note:		SynoBuildConf/build		is	executed	under	chroot	environment	/toolkit/build_env/ds.${platform}.

Build	Stage

22

SynoBuildConf/depends

	PkgCreate.py		will	resolve	your	dependency	according	to	this	configuration	file.	You	need	to	specify	your	project	dependency	and	the
build	environment	of	your	project	in	this	file.	For	example:

[BuildDependent]

#	each	line	here	is	a	dependent	project

[ReferenceOnly]

#	each	line	here	is	a	project	for	reference	only	but	no	need	to	be	built

[default]

all="7.2.2"			#	toolkit	environment	version	of	specific	platform.	(all	platform	use	7.2.2	toolkit	environment)

There	are	three	fields	in		SynoBuildConf/depends	:

BuildDependent:	Describes	other	projects	which	are	dependent	on	this	project.	For	further	details	about	this	field,	please	refer	to
Compile	Open	Source	Project:	nmap.
ReferenceOnly:	Describes	other	projects	which	are	referred	by	this	project,	without	the	build	process.
default:	Describes	the	toolkit	environment.	This	section	is	a	necessary	field.	It	indicates	each	platform	to	build	against	some	DSM
version	and	the	key	"all"	means	all	platform	use	this	version	by	default.

You	can	use		ProjDepends.py		script	to	see	whether	the	dependency	order	of	your	projects	is	correct.	Option		-x0		will	traverse	all
dependent	projects	of	${project}.

cd	/toolkit/pkgscripts-ng

./ProjDepends.py	-x0	${project}

If	your	application	contains	more	than	one	project,	put	them	in		/toolkit/source		and	edit		SynoBuildConf		accordingly	for	each	of	them.
For	advanced	usage,	you	may	refer	to	Compile	Open	Source	Project	and	References.

Build	Stage

23

SynoBuildConf/build

	SynoBuildConf/build		is	a	shell	script	that	tells		PkgCreate.py		how	to	compile	your	project.	The	current	working	directory	of	this	shell
script	is	located	in		/source/${project}		under	chroot	environment.

All	pre-built	binaries,	headers,	and	libraries	are	under	cross	compiler	sysroot	in	chroot	environment.	Since	sysroot	is	the	default	search
path	of	cross	compiler,	you	do	not	need	to	provide		-I		or		-L		to		CFLAGS		or		LDFLAGS	.

Variables:

You	can	also	find	most	of	them	in		/toolkit/build_env/ds.${platform}-${version}/{env.mak,env32/64.mak}	.	They	can	be	used	in
	SynoBuildConf/build	:

CC:	path	of	gcc	cross	compiler.
CXX:	path	of	g++	cross	compiler.
LD:	path	of	cross	compiler	linker.
CFLAGS :	global	cflags	includes.
AR:	path	of	cross	compiler	ar.
NM:	path	of	cross	compiler	nm.
STRIP:	path	of	cross	compiler	strip.
RANLIB:	path	of	cross	compiler	ranlib.
OBJDUMP:	path	of	cross	compiler	objdump.
LDFLAGS :	global	ldflags	includes.
ConfigOpt:	options	for	configure.
ARCH:	processor	architecture.
SYNO_PLATFORM:	Synology	platform.
DSM_SHLIB_MAJOR:	major	number	of	DSM	(integer).
DSM_SHLIB_MINOR:	minor	number	of	DSM	(integer).
DSM_SHLIB_NUM:	build	number	of	DSM	(integer).
ToolChainSysRoot:	cross	compiler	sysroot	path.
SysRootPrefix:	cross	compiler	sysroot	concat	with	prefix	/usr.
SysRootInclude:	cross	compiler	sysroot	concat	with	include_dir	/usr/include.
SysRootLib:	cross	compiler	sysroot	concat	with	lib_dir	/usr/lib.

#	SynoBuildConf/build

case	${MakeClean}	in

							[Yy][Ee][Ss])

															make	distclean

															;;

esac

make	${MAKE_FLAGS}

The	above	example	calls	the		make		command	and	compiles	your	project	according	to	your	Makefile	located	in		/source/${project}	.

Synology	toolkit	environment	has	included	selected	prebuild	projects.	You	can	enter	the	chroot	and	use	following	commands	to	check	if
needed	header	or	project	is	provided	by	toolkit.

##	inner	chroot

dpkg	-l		#	list	all	dpkg	projects.

dpkg	-L	{project	dev}	#	list	project	install	files

dpkg	-S	{header/library	pattern}	#	search	header/library	pattern.

For	example,	the	project	needs		zlib.h		and		libz.so		in	the	build	stage.	Use	following	command	to	check	if	zlib	and	its	component	are
installed	in	chroot.

Build	Stage

24

chroot	/tookit/build_env/ds.avoton-7.0/

##	inner	chroot

>>	dpkg	-l	|	grep	zlib

ii		zlib-1.x-avoton-dev								7.0-7274							all													Synology	build-time	library

>>	dpkg	-L	zlib-1.x-avoton-dev

/.

/usr

/usr/local

/usr/local/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.a

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/pkgconfig/zlib.pc

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zconf.h

/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/include/zlib.h

>>	dpkg	-S	zlib.so

zlib-1.x-avoton-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so

zlib-1.x-avoton-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1.2.8

zlib-1.x-avoton-dev:	/usr/local/x86_64-pc-linux-gnu/x86_64-pc-linux-gnu/sys-root/usr/lib/libz.so.1

Some	open	source	projects	require	to	use	other	projects'	cross	compiled	product	while	building	their	own	.	For	example,		python		needs
	libffi		and		zlib		while	configure,	we	need	to	provide	those	two	project	before	build		python	.	You	can	install	the	cross	compiled
product	into	the	destination	you	want	in	build	script.	Please	refer	to	Compile	Open	Source	Project:	nmap	for	more	information.

Makefile

The	following	example	shows	a		Makefile	.	Most	of	the	content	contains	typical	makefile	rules.	Note	that	when	writing	your	project
	Makefile	,	you	can	utilize	pre-defined	variables	in		/env.mak	.

##	You	can	use	CC	CFALGS	LD	LDFLAGS	CXX	CXXFLAGS	AR	RANLIB	READELF	STRIP	after	include	env.mak

include	/env.mak

EXEC=	examplePkg

OBJS=	examplePkg.o

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$<	-o	$@	$(LDFLAGS)

install:	$(EXEC)

				mkdir	-p	$(DESTDIR)/usr/bin/

				install	$<	$(DESTDIR)/usr/bin/

clean:

				rm	-rf	*.o	$(EXEC)

For	more	detailed	descriptions	about	makefile,	please	refer	to	the	article	here.

Build	Stage

25

https://www.gnu.org/software/make/manual/html_node/Makefiles.html

Pack	Stage:
In	the	Pack	Stage,		PkgCreate.py		packs	all	the	necessary	files	according	to	your	metadata	and	creates	a		.spk		at		/toolkit/result_spk	.
If	you	want		PkgCreate.py		to	enter	the	Pack	Stage	without	the	Build	Stage,	simply	run	PkgCreate.py	with	the	-i		option.

cd	/toolkit

pkgscripts-ng/PkgCreate.py	-i	${project}

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

├──	pkgscripts-ng/

│			├──	EnvDeploy

│			└──	PkgCreate.py

└──	source/

				└──${project}/

								└──	SynoBuildConf/

												├──	depends

												├──	build

												└──	install

Pack	Stage	Work	Flow:

1.	 	PkgCreate.py		will	execute	the	build	script		SynoBuildConf/install	.
i.	 Create		INFO		file	by	using		INFO.sh	.
ii.	 Move	necessary	files	to	a	temporary	folder,		/tmp/_install	,	for	instance,	and	create		package.tgz	.
iii.	 Move	necessary	metadata	and	resources	to	the	temporary	folder,		/tmp/_pkg	,	for	instance,	and	create	the		.spk		file.

2.	 	PkgCreate.py		will	sign	the	newly	created		.spk		file	with	a	gpg	key	which	is	placed	under		/root/		(the	package	signing	mechanism
is	deprecated	after	DSM7.0).

Pack	Stage

26

SynoBuildConf/install

This	file	must	be	written	in	bash	and	indicates	on	how	to	pack	your	project.	The	current	working	directory	is		/source/${project}	
under	chroot	environment.	If	this	is	the	top	project	of	your	package,	this	file	will	define	how	to	create	the		.spk		file,	including	directory
structure	and	the		INFO		file.

#!/bin/bash

###	Use	PKG_DIR	as	working	directory.

PKG_DIR=/tmp/_test_spk

rm	-rf	$PKG_DIR

mkdir	-p	$PKG_DIR

###	get	spk	packing	functions

source	/pkgscripts-ng/include/pkg_util.sh

create_inner_tarball()	{

				local	inner_tarball_dir=/tmp/_inner_tarball

				###	clear	destination	directory

				rm	-rf	$inner_tarball_dir	&&	mkdir	-p	$inner_tarball_dir

				###	install	needed	file	into	PKG_DIR

				make	install	DESTDIR="$inner_tarball_dir"

				###	create	package.txz:	$1=source_dir,	$2=dest_dir

				pkg_make_package	$inner_tarball_dir	"${PKG_DIR}"

}

create_spk(){

				local	scripts_dir=$PKG_DIR/scripts

				###	Copy	Package	Center	scripts	to	PKG_DIR

				mkdir	-p	$scripts_dir

				cp	-av	scripts/*	$scripts_dir

Pack	Stage

27

				###	Copy	package	icon

				cp	-av	PACKAGE_ICON*.PNG	$PKG_DIR

				###	Generate	INFO	file

				./INFO.sh	>	INFO

				cp	INFO	$PKG_DIR/INFO

				###	Create	the	final	spk.

				#	pkg_make_spk	<source	path>	<dest	path>	<spk	file	name>

				#	Please	put	the	result	spk	into	/image/packages

				#	spk	name	functions:	pkg_get_spk_name	pkg_get_spk_unified_name	pkg_get_spk_family_name

				mkdir	-p	/image/packages

				pkg_make_spk	${PKG_DIR}	"/image/packages"	$(pkg_get_spk_family_name)

}

create_inner_tarball

create_spk

At	the	beginning,	the	script	called	the	PrepareDirs	function	which	will	prepare	the	necessary	folder	for	the	project.

After	created	the	folder,	the	script	called	SetupPackageFiles	to	move	necessary	resource	files	to		$INST_DIR		and		$PKG_DIR	.	In	this
step,	we	called	the		INFO.sh		file	to	create	the		INFO		file.	Although	you	may	put	the	codes	that	generate	the		INFO		file	in	the
	SynoBuildConf/install		script,	we	highly	recommend	that	you	create	the	INFO	seperately.	Generally,	we	name	it		INFO.sh	.	You	can	see
how	to	write		INFO.sh		in	the	following	subsections.

After	moving	the	resource	file	to	the	proper	location,	we	called	the		MakePackage		function	to	create	the	package.	We	included/sourced	a
script	called		pkg_util.sh		which	is	located	at		/pkgscripts-ng/include	.	The		pkg_make_package		and		pkg_make_spk		defined	in
	pkg_util.sh		can	help	to	create		package.tgz		and		.spk	.

	pkg_make_package	$1	$2	:	Create	packages.tgz	of	$2	from	files	in	$1.
	pkg_make_spk	$1	$2	:	Create	spk	of	$2	from	files	in	$1.

INFO.sh
As	mentioned	earlier,		INFO.sh		is	just	an	optional	script.	You	can	create	the		INFO		file	by	hand	or	move	the	code	to
	SynoBuildConf/install	.	However,	we	strongly	recommend	that	you	utilize		INFO.sh		so	that	you	can	create	the	INFO	file	separately
from		SynoBuildConf/install	.

#!/bin/bash

source	/pkgscripts-ng/include/pkg_util.sh

package="ExamplePkg"

version="1.0.0000"

displayname="Example	Package"

maintainer="Synology	Inc."

arch="$(pkg_get_unified_platform)"

description="this	is	a	Example	package"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

The	above	code	is	just	an	example	to	show	some	important	variables	for		pkg_dump_info	.	If	you	want	to	know	more	details	about
the		INFO		file	and	each	fields,	please	refer	to	INFO.

Similar	to		SynoBuildConf/install	,	we	must	first	include		pkg_util.sh	.	After	that,	we	can	set	up	proper	variables	and	call	the
	pkg_dump_info		to	create	the	INFO	file	correctly.	As	you	may	have	noticed,	we	used	another	helper	function	called		pkg_get_platform	
to	set	the	architecture	variable.	This	variable	indicates	the	current	platform	we	are	building.

pkg_get_spk_platform:	Return	platform	for	“arch”	in		INFO	.
pkg_dump_info:	Dump		INFO		according	to	given	variables.

Pack	Stage

28

Remember	to	make		INFO.sh		be	executable	(e.g.,		chmod	+x	INFO.sh)

Spk	Packing	Functions

Synology	package	framework	provides	several	functions	to	improve	efficiency	of	packing	packages.	The	functions	such	as	generating
architecture	information	in	the		INFO		file,	separating		.spk		name	and	creating		.spk		will	be	enabled	after	import		/pkgscripts-
ng/include/pkg_util.sh	.

Spk	Platform	Functions

A		.spk		can	be	installed	on	one	or	more	platforms.	You	can	decide	which	platform	can	be	installd	via		INFO		file.

function	name Values Description

(No	function) noarch Package	only	contain	scripts.	spk	can	be	run	on	all	synology	Models.

pkg_get_platform_family x86_64	i686	armv7
armv5	ppc...

Unify	platforms	with	same	kernel	into	a		platform	family	.	The
package	can	run	on	same	family	of	synology	models.

pkg_get_spk_platform bromolow	cedarview
qoriq	armadaxp...

Directly	output	the	platform	where	the	toolkit	environment	is	used.
The	package	can	only	run	on	the	specific	platform.

If	your	package	doesn't	have	any	native	binary,	you	can	use		noarch		as	the	platfrom	and	write	the	scripts	for	your	package.
Package	with		arch=noarch		can	be	installed	onto	any	synology	model.
If	your	package	doesn’t	have	any	kernel	related	functions,	the	package	can	run	on	the	same	architecture	platforms.	Use	function
	pkg_get_platform_family		to	get	platform	family.	Package	can	be	installed	on	the	models	included	in	the	same	platform	family.	For
example,	package	with		arch=x86_64		can	be	install	onto		bromolow	cedarview	broadwell		models.
If	your	package	contains	kernel	related	functions,	every	platforms	will	need	a	specific	spk.	Please	use	function
	pkg_get_spk_platform		to	get	the	platform(s)	which	is	compatiable	with	your	environment.

Spk	Naming	Functions

After	spk	generated,	we	need	to	distinguish	spk	name	by	platform.	We	can	use	spk	name	functions:

Function	name Corresponding
platform	function Example Description

pkg_get_spk_name pkg_get_spk_platform

examplePkg-
bromolow-
1.0.0000.spk	/
examplePkg-
cedarview-
1.0.0000.spk	...

Spk	name	depends	on	which	toolkit
environment	is	using.

pkg_get_spk_name noarch examplePkg-
1.0.0000.spk

If	the	package	has		platform="noarch"	,
this	function	will	output	spk	name
without	platform	info.

pkg_get_spk_family_name pkg_get_platform_family
examplePkg-
x86_64-
1.0.0000.spk

Spk	name	will	be	unified	into	platform
family.	Same	platform	family	will	geneate
the	same	spk	name.	i.e	bromolow	and
x64	will	have	same	spk	name.

You	need	to	use	path	of		INFO		as	argument.	If	no	path	specified,	the	function	will	get		INFO		file	from		$PKG_DIR/INFO	
automatically.

Spk	Creation	Functions

Developer	can	use		pkg_make_spk		to	create	spk.

pkg_make_spk	$source_path	$dest_path	$spk_name

Pack	Stage

29

source_path	is	spk	source	directory.	All	spk	files	must	copy	into	this	direcotry	before	run	pkg_make_spk.
dest_path	is	target	spk	path.
spk_name	is	spk	name	with/without	platform	info.

Example:

pkg_make_spk	/tmp/_test_spk	"/image/packages"	$(pkg_get_spk_family_name)

Pack	Stage

30

Sign	Package	(only	for	DSM6.X)
Signing	mechanism	is	deprecated	after	DSM7.0,	you	don't	need	this	if	you	are	developing	package	for	DSM7.0

Between	DSM5.1	and	DSM6.X,	we	have	a	built-in	code	sign	mechanism	to	ensure	the	package's	publisher	integrity.	The	toolkit	has	a
	CodeSign.php		script	to	sign	the	package	with	GnuPG	keys.	If	you	do	not	have	a	GPG	key,	you	will	need	to	generate	one.

Setup	existing	GPG	key

If	you	have	your	own	GPG	key	(without	a	passphrase)	already,	you	will	need	to	put	the	private	key	under		/root/.gnupg		of	each
platform	(e.g.,		/toolkit/build_env/ds.${platform}-6.2/root/.gnupg/).

The	package	signing	scripts	now	only	support	keys	generated	by	GPG	2.1.	If	you	don't	have	your	own	GPG	key	or	you	are	using	GPG
keys	in	GPG	2.2	format,	you	need	to	prepare	GPG	tool	and	generate	one.

Setup	GPG	tool	provided	by	dist
If	your	dist	provides	GPG	2.1,	install	gpg	with	your	package	management	tool	in	your	dist.	For	ubuntu	developers,	you	may	run		apt-
get	install	gpg	gpg-agent		to	setup	GPG	tool.

Make	sure	you	are	using	GPG	2.1.	If	your	dist	does	not	provides	GPG	2.1,	Follow	the	instructions	in	the	next	section	to	prepare	your
GPG	tool.

Setup	GPG	tool	with	docker

Assume	you're	developing	on	avoton	platform	with	DSM	version	6.2,	and	/tmp/gpgkey	is	the	temporary	folder	saving	the	GPG	key
generated.

mkdir	/tmp/gpgkey

docker	run	--rm	-it	-v	/tmp/gpgkey:/root/.gnupg	-e	GPG_TTY=/dev/console	vladgh/gpg:0.2.3	--gen-key

mv	/tmp/gpgkey	/path/to/build_env/ds.avoton-6.2/root/.gnupg

Generate	GPG	key	with	gpg

gpg	--gen-key

>	Please	select	what	kind	of	key	you	want:

			(1)	RSA	and	RSA	(default)

>	choose	key	size	and	enter	your	name,	email

>	enter	a	passphrase:	just	press	Enter	without	typing	any	character

WARNING:	Please	make	sure	that	you	do	not	type	any	characters	in	the	passphrase	field,	otherwise	the	build	process	will
FAIL.

After	completing	the	steps	above,	the	key	will	be	generated	under		~/.gnupg	.	You	need	to	move	them	into	the	chroot	environment.

cp	~/.gnupg/*	/toolkit/build_env/ds.${platform}-6.2/root/.gnupg/

You	can	also	use	the	following	commands	to	verify	whether	the	key	has	successfully	imported	or	not.

cd	/toolkit/build_env/ds.${platform}-6.2/

chroot	.

Sign	Package	(only	for	DSM6.X)

31

gpg	-K

The	output	may	produce	the	following	message:

/root/.gnupg/secring.gpg

sec			2048R/145E0AFD	2015-12-21

uid																		Synology	Inc.	<synology_inc@synology.com>

ssb			2048R/E0C20F11	2015-12-21

Sign	the	package

If	you	want		PkgCreate.py		to	sign	the	package	automatically,	you	can	use	the		PkgCreate.py		without	the		--no-sign		option.	For
example,	the	following	command	indicates		PkgCreate.py		to	build	and	install	your	project	without	a	signature.

PkgCreate.py	-i	${project}

In	addition,	if	you	want	to	sign	the	package	on	your	own,	you	can	use	the	following	command	to	sign	your	package	manually.

chroot	/toolkit/build_env/ds.${platform}-${version}

php	/pkgscripts-ng/CodeSign.php	[option]	--sign=package-path

Options:

--keydir=keyrings	directory	(default	is	/root/.gnupg)

--keyfpr=key's	fingerprint	(default	is	"".	Under	this	circumstances,	we	will	using	the	first	key	in	the	key	directory	to	sign	

the	package)

Examples:

php	/pkgscripts-ng/CodeSign.php	--sign=phpBB-3.0.12-0031.spk

php	/pkgscripts-ng/CodeSign.php	--keydir=/root/.gpg	--keyfpr=C1BF63CD	--sign=phpBB-3.0.12-0031.spk

Sign	Package	(only	for	DSM6.X)

32

References
This	section	illustrates	advanced	types	of	usage	for	the	Package	Toolkit.

PkgCreate.py	Command	Option	List

The	following	table	lists	some	of	the	PkgCreate.py	commands.

Option
Name Option	Purpose

(default) Run	build	stage	only	which	include	link	and	compile	source	code.	It's	the	same	as	-U	option.

-p Specify	the	platform	you	want	to	pack	your	project.

-x Build	dependent	project	level.	Each	project	is	built	according	to	their	own		SynoBuildConf/build		(e.g.,	-x0,	-x1)

-c Run	both	build	stage	and	pack	stage	which	include	link	source	code,	compile	source	code,	pack	package	and
sign	the	final	spk.

-U Run	build	stage	only	which	includes	link	and	compile	source	code.

-l Run	build	stage	only,	but	will	only	link	your	source	code.

-L Run	build	stage	only,	but	will	compile	your	source	code	only.

-I Run	pack	stage	only,	which	will	pack	and	sign	your	spk.

--no-sign Tells	PkgCreat.py	not	to	sign	your	spk	file.	for	example,	PkgCreat.py	-I	--no-sign	${project}

-z Run	all	platforms	concurrently.

-J Compile	your	project	with	-J	make	command	options.

-S Disable	silent	make.

The	following	table	shows	the	relationship	between	command	options	in	different	stages.	You	can	choose	the	proper	options	based	on
your	needs.	Option		-c		is	enough	for	most	cases.

Stage Action (default) -l -L -U -I	--no-sign -I -c

Build	Stage Link	Source	code Yes Yes No Yes No No Yes

Build	Stage Compile	Source	code Yes No Yes Yes No No Yes

Pack	Stage Pack	Package No No No No Yes Yes Yes

Pack	Stage Sign	Package No No No No No Yes Yes

Platform-Specific	Dependency

Platform-specific	dependency	means	you	can	have	several	dependent	projects	for	different	platforms	by	appending	":${platform}"	to
the	following	sections:	BuildDependent	and	ReferenceOnly.	The	following	example	shows	816x	and	aramda370	projects	that	are	on
libbar-1.0.

#	SynoBuildConf/depends

[BuildDependent]

libfoo-1.0

[BuildDependent:816x,armada370]		

libfoo-1.0

References

33

libbar-1.0

[default]

all="7.0"

Collect	the	SPK	File	in	Your	Own	Way
By	default,	PkgCreate.py	will	move	the	SPK	file	to	/toolkit/result_spk	according	to	/toolkit/build_env/ds.${platform}-
${version}/source/${project}/INFO.	You	can	have	your	own	collect	operation	by	adding	a	hook,	SynoBuildConf/collect.
SynoBuildConf/collect	can	be	any	executable	shell	script	(so	remember	to	chmod	+x)	and	PkgCreate.py	will	pass	the	following
environment	variables	to	it:

SPK_SRC_DIR:	Source	folder	of	target	SPK	file.
SPK_DST_DIR:	Default	destination	folder	to	put	SPK	file.
SPK_VERSION:	Version	of	package	(according	to	INFO).

The	current	working	directory	of	SynoBuildConf/collect	is	/source/${project}	will	be	under	chroot	environment.

References

34

Package	Introduction
In	this	section,	you	will	learn	the	layout	of	synology	package	(.spk)	and	the	meaning	of	each	file.

spk

├──	INFO

├──	package.tgz

├──	scripts

│			├──	postinst

│			├──	postuninst

│			├──	postupgrade

│			├──	preinst

│			├──	preuninst

│			├──	preupgrade

│			└──	start-stop-status

├──	conf

│			├──	privilege

│			└──	resource

├──	WIZARD_UIFILES

│			├──	install_uifile

│			└──	uninstall_uifile

├──	LICENSE

├──	PACKAGE_ICON.PNG

└──	PACKAGE_ICON_256.PNG

Package	Structure
A	Synology	package	contains	the	following	files:

File/Folder	Name
(case	sensitive) Required Description File/Folder

Type
DSM

Requirement

INFO O This	file	describes	the	properties	of	a
package.

Properties
File 2.0-0731

package.tgz O

This	is	a	compressed	file	containing	all
the	files	that	should	be	extracted	into	the
system,	such	as	executable	binaries,
libraries,	or	UI	files.

TGZ	File 2.0-0731

scripts O This	folder	contains	shell	scripts	which
control	the	lifecycle	of	a	package. Folder 2.0-0731

conf O This	folder	contains	additional
configurations. Folder 4.2-3160

WIZARD_UIFILES	7.2.2 X

This	folder	contains	wizard	UI	files
which	are	used	to	guide	package	user	in
the	installation	/	uninstallation	procedure.

Folder 7.2.2

LICENSE X
The	file	content	will	show	on	UI	in	the
installation	procedure.	It	must	be	less
than	1	MB.

Text	File 3.2-1922

PACKAGE_ICON.PNG O

PNG	format	image	shown	in	Package
Center
For	DSM	6.x,	the	dimension	should	be
72	x	72.
For	DSM	7.0	or	above,	the	image
dimension	should	be	64	x	64.

PNG	file 3.2-1922

PACKAGE_ICON_256.PNG O
PNG	format	image	shown	in	Package
Center.	Its	dimension	should	be	256	x
256.

PNG	file 5.0-4400

Synology	Package

35

To	create	such	package	layout,	please	refer	to	the	Pack	Stage	for	detailed	steps.

Synology	Package

36

INFO
This	file	describes	the	properties	of	a	package

INFO	Field	Format:

Each	property	is	defined	as	key/value	pair	separated	by	an	equals	sign

key=value

INFO	Field	List:

You	can	define	properties	according	to	the	requirements:

Necessary	Fields
Optional	Fields

thirdparty="yes"

maintainer="mycompany"

description="mydescription"

distributor="mycompany"

package="mypackagename"

silent_install="yes"

silent_uninstall="yes"

silent_upgrade="yes"

os_min_ver="7.0-40000"

version="0.0.1-0001"

arch="noarch"

How	to	write	an	INFO	File
Instead	of	writing	the	INFO	file	manually,	you	can	use	the	helper	functions	in	Package	Toolkit	to	generate	some	fields	programmatically.
Please	refer	to	INFO.sh	for	more	information.

INFO

37

Field	Name:	package

Description:	Package	identity.	No	more	than	one	version	of	a	package	can	exist	at	the	same	time	in	the	end	user's	DSM;	therefore,
the	identification	is	unique	to	identify	your	package.	Besides,	Package	Center	will	create	a	/var/packages/[package	identity]	folder	to
put	package	files.

Note:	This	value	of	the	key	cannot	contain	any	of	these	special	characters	:,	/,	>,	<,	|	or	=.

Value:	String

Default	Value:	(Empty)

Example:

package="DownloadStation"

DSM	Requirement:	2.0-0731

Field	Name:	version
Description:	Package	version.	End	users	can	identify	the	package	version.

Note:

1.	 Each	version	delimiter	is	only	allowed	to	be	.	-	or	_.
2.	 Each	version	number	which	is	delimited	by	delimiteris	only	allowed	to	be	number
3.	 Version	value	should	be	in	the	format	of	[feature	number]-[build	number].	Build	number	should	be	increased	on

every	version	and	it	can	be	used	to	distinguish	package	versions	between	different	DSM	major	versions.
Value:	String,	major,	minor,	micro	and	build	numbers	should	be	in	the	range	of	0	-	2^31-1.

Default	Value:	(Empty)

Example:

version="3.6-3263"

version="1.2.3-0001"

DSM	Requirement:	2.0-0731

Field	Name:	os_min_ver

Description:	Earliest	version	of	DSM	that	is	required	to	run	the	package.	The	value	should	be	at	least		7.0-40000		after	DSM	7.0.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_min_ver="7.0-40000"

DSM	Requirement:	6.1-14715

Field	Name:	description

Description:	Package	Center	shows	a	short	description	of	the	package.

Value:	String

Necessary	Fields

38

Default	Value:	(Empty)

Example:

description	=	"Download	Station	is	a	web-based	download	application	which	allows	you	to	download	files	from	the	Internet	

through	BT,	FTP,	HTTP,	NZB,	Thunder,	FlashGet,	QQDL,	and	eMule,	and	subscribe	to	RSS	feeds	to	keep	you	updated	on	the	hot

test	or	latest	BT.	It	offers	the	auto	unzip	service	to	help	you	extract	compressed	files	to	your	Synology	NAS	whenever	fi

les	are	downloaded.	With	Download	Station,	you	can	download	files	from	multiple	file	hosting	sites,	and	search	for	torren

t	files	via	system	default	search	engines	as	well	as	self-added	engines	with	the	BT	search	function."

DSM	Requirement:	2.3-1118

DSM	Requirement:	4.2-3160

Field	Name:	arch

Description:	List	the	CPU	architectures	which	can	be	used	to	install	the	package.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)

Default	Value:	noarch

Note:

1.	 "noarch"	means	the	package	can	be	installed	and	work	in	any	platform.	For	example,	the	package	is	written	in	PHP	or	shell
script.

2.	 Please	not	pack	all	binary	files	with	different	platforms	to	one	package	spk	file.

Example:

arch="noarch"

or

arch="x86_64	alpine"

DSM	Requirement:	2.0-0731

Field	Name:	maintainer
Description:	Package	Center	shows	the	developer	of	the	package.

Value:	String

Default	Value:	(Empty)

Example:

maintainer="Synology	Inc."

DSM	Requirement:	2.0-0731

Necessary	Fields

39

Field	Name:	displayname

Description:	Package	Center	shows	the	name	of	the	package.
Note:	If	displayname	key	is	empty,	Package	Center	will	display	the	value	of	package	key.

Value:	String
Default	Value:	The	value	of	package	key
Example:	None
DSM	Requirement:	2.3-1118

Field	Name:	displayname_[DSM	language]

Description:	Package	Center	shows	the	name	in	the	DSM	language	set	by	the	end-user.	DSM	supports	the	following	languages:
enu	(English)
cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)
ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)
plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String
Default	Value:	package	name
Example:

displayname_enu="Hello	World"

displayname_cht=""

DSM	Requirement:	2.3-1118

Field	Name:	description_[DSM	language]

Description:	Package	Center	shows	a	short	description	in	the	DSM	language	set	by	the	end-user.
DSM	supports	the	following	languages:

enu	(English)
cht	(Traditional	Chinese)
chs	(Simplified	Chinese)
krn	(Korean)

Optional	Fields

40

ger	(German)
fre	(French)
ita	(Italian)
spn	(Spanish)
jpn	(Japanese)
dan	(Danish)
nor	(Norwegian)
sve	(Swedish)
nld	(Dutch)
rus	(Russian)
plk	(Polish)
ptb	(Brazilian	Portuguese)
ptg	(European	Portuguese)
hun	(Hungarian)
trk	(Turkish)
csy	(Czech)

Value:	String

Default	Value:	description
Example:

description_enu="Hello	World"

description_cht=""

DSM	Requirement:	2.3-1118

Field	Name:	maintainer_url
Description:	If	a	package	has	a	developer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)
Example:

maintainer_url="http://www.synology.com"

DSM	Requirement:	4.2-3160

Field	Name:	distributor
Description:	Package	Center	shows	the	publisher	of	the	package.
Value:	String
Default	Value:	(Empty)
Example:

distributor="Synology	Inc."

DSM	Requirement:	4.2-3160

Field	Name:	distributor_url

Description:	If	a	package	is	installed	and	has	a	distributer	webpage,	Package	Center	will	show	a	link	to	let	the	user	open	it.
Value:	String
Default	Value:	(Empty)

Optional	Fields

41

Example:

distributor_url	="http://www.synology.com/enu/apps/3rd-party_application_integration.php"

DSM	Requirement:	4.2-3160

Field	Name:	support_url

Description:	Package	Center	shows	a	support	link	to	allow	users	to	seek	technical	support	when	needed.

Value:	String

Default	Value:	(Empty)

Example:

support_url="https://myds.synology.com/support/support_form.php".

Field	Name:	support_center
Description:	If	set	to	“yes,”	Package	Center	displays	a	link	to	make	the	end	user	launch	Synology	Support	Center	Application
when	your	package	is	installed.

Note:	If	set	to	“yes,”	the	report_url	link	won’t	show	in	Package	Center.

Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	5.0-4458

Field	Name:	model

Description:	List	of	models	on	which	packages	can	be	installed	in	spesific	models.	It	is	organized	by	Synology	string,	architecture
and	model	name.
Value:	(models	are	separated	with	a	space,	e.g.	synology_88f6281_209,	synology_cedarview_rs812rp+,	synology_x86_411+II,
synology_bromolow_3612xs,	synology_cedarview_rs812rp+,	…)
Default	Value:	(Empty)
Example:

model="synology_bromolow_3612xs	synology_cedarview_rs812rp+".

DSM	Requirement:	4.0-2219

Field	Name:	exclude_arch

Description:	List	the	CPU	architectures	where	the	package	can't	be	used	to	install	the	package.
Note:	Be	careful	to	use	this	exclude_arch	field.	If	the	package	has	different	exclude_arch	value	in	the	different	versions,
the	end	user	can	install	the	package	in	the	specific	version	without	some	arch	values	of	exclude_arch.

Value:	(arch	values	are	separated	with	a	space.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table	to	more
information)
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	6.0

Optional	Fields

42

Example:

exclude_arch="bromolow	cedarview".

Field	Name:	checksum
Description:	Contains	MD5	string	to	verify	the	package.tgz.
Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	adminport
Description:	A	package	listens	to	a	specific	port	to	display	its	own	UI.	If	the	package	is	defined	by	a	port,	a	link	will	be	opened
when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	0~65536
Default	Value:	80
Example:

adminport="9002"

DSM	Requirement:	2.0-0731

Field	Name:	adminurl

Description:	If	a	package	is	installed	and	has	a	webpage,	a	link	will	be	opened	when	the	package	is	started.
Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	String
Default	Value:	(Empty)
Example:

adminurl="web"

DSM	Requirement:	2.3-1118

Field	Name:	adminprotocol

Description:	A	package	uses	a	specific	protocol	to	display	its	own	UI.	If	a	package	is	installed	and	has	a	webpage,	a	protocol	will
be	opened	when	the	package	is	started.

Note:	adminprotocol,	adminportand	adminurl	keys	are	combined	to	adminprotocol://ip:adminport/adminurl	link

Value:	http	/	https	
(Separated	with	a	space)
Default	Value:	http
Example:

adminprotocol="http"

DSM	Requirement:	3.2-1922

Optional	Fields

43

Field	Name:	dsmuidir

Description:	DSM	UI	folder	name	in	package.tgz.	The	UI	folder	of	the	package	in	/var/packges/[packge
name]/target/[dsmuidir]	will	be	automatically	linked	to	the	DSM	UI	folder	in
/usr/syno/synoman/webman/3rdparty/[linkname]	to	show	your	package's	shortcut	in	DSM.

Note:

1.	 If	only	one	path	is	provided,	the	path	will	be	the	relative	path	to	dsmuidir	in	package	target	and	the	link	name	will	be
package	name.

2.	 If	multiple	key:value	pairs	are	provided,	the	key	will	be	the	name	of	link	and	the	value	will	be	the	relative	path	to
dsmuidir	in	package	target.

3.	 Please	refer	Integrate	Your	package	into	DSM	for	more	information.
Value:	String
Default	Value:	(Empty)
Example:

dsmuidir="ui"

dsmuidir="MyLinkName1:ui/app1	MyLinkName2:ui/app2"

DSM	Requirement:	3.2-1922	for	single	value	7.0-40731	for	multiple	values

Field	Name:	dsmappname

Description:	The	value	of	each	individual	application	will	be	equal	to	the	unique	property	name	in	DSM’s	config	file	so	as	to	be
integrated	into	Synology	DiskStation.

Note:	Please	refer	Config	in	Integrate	Your	package	into	DSM	chapter	for	more	information.

Value:	(Separated	with	a	space)
Default	Value:	(Empty)
Example:

dsmappname="SYNO.SDS.PhotoStation	SYNO.SDS.PersonalPhotoStation"

DSM	Requirement:	3.2-1922

Field	Name:	dsmapppage
Description:	The	application	page	to	open	when	click	on	package	open	button	(should	be	used	with	dsmappname	key)
Value:	Page	name

Note:	page	name	corresponds	to	PageListAppWindow's	fn	value	when	calling	SYNO.SDS.AppLaunch

Default	Value:	(Empty)
Example:

dsmappname="SYNO.SDS.AdminCenter.Application"

dsmapppage="SYNO.SDS.AdminCenter.FileService.Main"

DSM	Requirement:	7.0-40332

Field	Name:	dsmapplaunchname

Description:	The	value	will	be	used	to	launch	desktop	app,	and	it	has	higher	priority	than	dsmappname.
Value:	App	name
Default	Value:	same	as		dsmappname	

Optional	Fields

44

Example:

dsmapplaunchname="SYNO.SDS.AdminCenter.Application"

DSM	Requirement:	7.0-40796

Field	Name:	checkport

Description:	Check	if	there	is	any	conflict	between	the	adminport	and	the	ports	which	are	reserved	or	are	listening	on	DSM
except	web-service	ports	(e.g.	80,	443)	and	DSM	ports	(e.g.	5000,	5001).
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	startable

Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This	key	is
set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	Deprecated	after	6.1-14907,	use	ctl_stop	instead.	
If	“startable”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	ctl_stop
Description:	When	no	program	in	the	package	provides	the	end-user	with	the	options	to	enable	or	disable	its	function.	This	key	is
set	to	"no"	and	the	end-user	cannot	start	or	stop	the	package	in	Package	Center.

Note:	If	“ctl_stop”	is	set	to	“no”,	start-stop-status	script	which	runs	in	bootup	or	shotdown	is	still	required.

Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.1-14907

Field	Name:	ctl_uninstall

Description:	If	this	key	is	set	to	"no",	the	end-user	cannot	uninstall	the	package	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.1-14907

Field	Name:	precheckstartstop

Description:	If	set	to	"yes",	let	start-stop-status	with	prestart	or	prestop	argument	run	before	start	or	stop	the	package.	Please
refer	to	start-stop-status	in	scripts	for	more	information.
Value:	"yes"/"no"

Optional	Fields

45

Default	Value:	"yes"
Example:	None
DSM	Requirement:	6.0

Field	Name:	helpurl

Description:	If	a	package	is	installed	and	has	a	"help"	webpage,	Package	Center	will	display	a	hyperlink	to	the	user.
Value:	String
Default	Value:	(Empty)
Example:

helpurl="https://www.synology.com/en-global/knowledgebase"

DSM	Requirement:	3.2-1922

Field	Name:	beta

Description:	If	this	package	is	considered	the	beta	version,	the	beta	information	will	be	shown	in	Package	Center.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	6.0

Field	Name:	report_url

Description:	If	a	package	is	a	beta	version	and	has	a	"report"	webpage,	Package	Center	will	display	a	hyperlink.	If	this	package	is
considered	the	beta	version,	the	beta	information	will	be	also	be	shown	in	Package	Center.
Value:	String
Default	Value:	(Empty)
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_reboot

Description:	Reboot	DiskStation	after	installing	or	upgrading	the	package.
Value:	"yes"/"no"
Default	Value:	"no"
Example:	None
DSM	Requirement:	3.2-1922

Field	Name:	install_dep_packages

Description:	Before	a	package	is	installed	or	upgraded,	these	packages	must	be	installed	first.	In	addition,	the	order	of	starting	or
stopping	packages	is	also	dependent	on	it.	The	format	consists	of	a	package	name.	If	more	than	one	dependent	packages	are
required,	the	package	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_dep_packages="packageA".	If	a	specific
version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which
is	composed	by	number	and	periods,	e.g.	install_dep_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Don’t	use	<=	and	>=	if	a	package	can	be	installed	in	DSM
4.1	or	older	because	it	cannot	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Optional	Fields

46

Value:	Package	names
Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_dep_packages="packageA"

or

install_dep_packages="packageA>2.2.2:packageB"

DSM	Requirement:	3.2-1922

Field	Name:	install_conflict_packages
Description:	Before	your	package	is	installed	or	upgraded,	these	conflict	packages	cannot	be	installed.	The	format	consists	of	a
package	name,	e.g.	install_conflict_packages="packageA".	If	more	than	one	conflict	packages	are	required	with	the	format,	the
name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_conflict_packages="packageA:packageB".	If	a	specific
version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which
is	composed	by	number	and	periods,	e.g.	install_conflict_packages="packageA>2.2.2:packageB".

Note:	>=	and	<=	operator	only	supported	in	DSM	4.2	or	newer.	Do	not	use	<=	and	>=	if	a	package	can	be	installed	in	DSM
4.1	because	it	can’t	be	compared	correctly.	Instead,	the	package	version	should	be	set	lower	or	higher.

Value:	Package	names
Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_conflict_packages="packageA:packageB"

or

install_conflict_packages="packageA>2.2.2:packageB"

DSM	Requirement:	4.1-2851

Field	Name:	install_break_packages
Description:	After	your	package	is	installed	or	upgraded,	these	to-be-broken	packages	will	be	stopped	and	remain	broken	during
the	existence	of	your	package.	The	format	consists	of	a	package	name,	e.g.	install_break_packages="packageA".	If	more	than
one	to-be-broken	packages	are	required	with	the	format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.
install_break_packages="packageA:packageB".	If	a	specific	version	range	is	required,	package	name	will	be	followed	by	one	of
the	special	characters	=,	<,	>,	>=,	<=	and	package	version	which	is	composed	by	number	and	periods,	e.g.
install_break_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_break_packages="packageA:packageB"

or

install_break_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	install_replace_packages

Optional	Fields

47

Description:	After	your	package	is	installed	or	upgraded,	these	to-be-replaced	packages	will	be	removed.	The	format	consists	of	a
package	name,	e.g.	install_replace_packages="packageA".	If	more	than	one	to-be-replaced	packages	are	required	with	the
format,	the	name	of	the	package(s)	will	be	separated	with	a	colon,	e.g.	install_replace_packages="packageA:packageB".	If	a
specific	version	range	is	required,	package	name	will	be	followed	by	one	of	the	special	characters	=,	<,	>,	>=,	<=	and	package
version	which	is	composed	by	number	and	periods,	e.g.	install_replace_packages="packageA>2.2.2:packageB".
Value:	Package	names

Note:	Each	package	name	is	separated	with	a	colon.

Default	Value:	(Empty)
Example:

install_replace_packages="packageA:packageB"

or

install_replace_packages="packageA>2.2.2:packageB"

DSM	Requirement:	6.1-15117

Field	Name:	install_dep_services
Description:	Before	the	package	is	installed	or	upgraded,	these	services	must	be	started	or	enabled	by	the	end-user.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql
DSM	7.0:	ssh-shell,	pgsql,	network.target,	network-online.target,	nginx.service,	avahi.service,	atalk.service,	crond.service,	nfs-
server.service

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

DSM	Requirement:	3.2-1922

Field	Name:	start_dep_services

Description:	Before	the	package	is	started,	these	services	must	be	started	or	enabled	by	the	end-user.	If	startable	is	set	to	“no”,
this	value	is	ignored.
Value:	
DSM	4.2	or	older:	apache-web,	mysql,	php_disable_safe_exec_dir
DSM	4.3:	apache-web,	mysql,	php_disable_safe_exec_dir,	ssh
DSM	5.0	~	DSM	5.2:	apache-web,	php_disable_safe_exec_dir,	ssh,	pgsql
DSM	6.0:	ssh,	pgsql
DSM	7.0:	ssh-shell,	pgsql,	network.target,	network-online.target,	nginx.service,	avahi.service,	atalk.service,	crond.service,	nfs-
server.service

Note:	Each	service	is	separated	with	a	space.

Default	Value:	(Empty)
Example:

install_dep_services="apache-web	ssh"

DSM	Requirement:	3.2-1922

Optional	Fields

48

Field	Name:	extractsize

Description:	This	value	indicates	the	minimal	space	to	install	a	package.	It	will	be	used	to	prompt	the	user	if	there	is	enough	free
space	to	install	it.

Note:

1.	 In	DSM	5.2	or	order,	the	size	based	on	byte	unit.
2.	 In	DSM	6.0	or	newer,	the	size	based	on	kilobyte	unit.

Value:	Size	unit
Default	Value:	The	byte	size	of	SPK	file	of	package
Example:

extractsize="253796"

DSM	Requirement:	4.0-2166

Field	Name:	support_conf_folder

Description:	In	DSM	5.2	or	order,	if	you	want	to	use	some	special	configuration	files	within	a	"conf"	folder,	this	value	must	be	set
to	"yes".	More	details	are	given	in	the	"conf"	section.	Howerver,	in	DSM	6.0	or	newer,	you	don't	need	to	define	it	anymore.

Note:	Deprecated	in	DSM	6.0

Value:	"yes"/"no"
Default	Value:	"no"
Example:

support_conf_folder="yes"

DSM	Requirement:	4.2-3160	~	5.2

Field	Name:	install_type
Description:	If	set	to	“system”/"system_hidden",	your	package	will	be	installed	in	the	root	file	system,
/usr/local/packages/@appstore/,	even	if	there	is	no	volume.

Note:

1.	 Be	careful	when	setting	this,	as	it	may	result	in	the	DiskStation	crashing	if	your	package	runs	out	of	the	space	in	the
root	file	system.

Value:	"system"
Default	Value:	(Empty)
Example:

install_type="system"

DSM	Requirement:	5.0-4458

Field	Name:	silent_install

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	installed	without	the	package	wizard	in	the	background.	This	allows
CMS	(Central	Management	System)	to	distribute	package	installation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

Optional	Fields

49

silent_install="yes"

DSM	Requirement:	5.0-4458

Field	Name:	silent_upgrade

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	upgraded	without	the	package	wizard	in	the	background.	End	user
cannot	modify	any	information	for	upgrading.	This	allows	not	only	your	package	to	be	upgraded	automatically	but	also	for	CMS
(Central	Management	System)	to	distribute	package	upgrades	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_upgrade="yes"

DSM	Requirement:	5.0-4458

Field	Name:	silent_uninstall

Description:	If	set	to	“yes”,	your	package	is	allowed	to	be	uninstalled	without	the	package	wizard	in	the	background.	This	allows
CMS	(Central	Management	System)	to	distribute	package	uninstallation	to	other	NAS	connected.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

silent_uninstall="yes"

DSM	Requirement:	5.0-4458

Field	Name:	auto_upgrade_from
Description:	It	is	set	to	a	version	of	your	package.	If	your	package	is	set	to	silent_upgrade="yes"	and	the	value	is	set,	Package
Center	only	upgrades	your	package	automatically	from	the	installed	package	with	the	version	or	the	newer	version.	However,	if	the
end	user	install	a	older	version	than	it,	Package	Center	won't	upgrade	it	automatically	and	the	user	must	upgrade	it	by	themself.
Value:	(a	package	version)
Default	Value:	(Empty	string)
Example:

auto_upgrade_from="2.0"

DSM	Requirement:	5.2-5565

Field	Name:	offline_install

Description:	If	set	to	"yes",	after	the	package	is	published	in	synology	server,	it	won't	be	shown	in	the	package	list	of	Package
Center	from	Synology	server.	However,	the	user	can	install	the	package	manually.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

offline_install="yes"

Optional	Fields

50

DSM	Requirement:	DSM	6.0

Field	Name:	thirdparty

Description:	If	set	to	“yes”,	your	package	is	a	third-party	package	and	isn't	developed	by	Synology.	In	Package	Center,	third-pary
pacakges	will	be	shown	in	another	part.

Note:	It's	not	used	in	DSM	5.0	or	newer.

Value:	"yes"/"no"
Default	Value:	"no"
Example:

thirdparty="yes"

DSM	Requirement:	4.0~4.3

Field	Name:	os_max_ver
Description:	Maximum	version	of	DSM	that	is	capable	to	run	the	package.
Value:	X.Y-Z	DSM	major	number,	DSM	minor	number,	DSM	build	number
Default	Value:	None
Example:

os_max_ver="6.1-14715"

DSM	Requirement:	6.1-14715

Field	Name:	support_move

Description:	If	set	to	"yes",	the	package	can	be	moved	to	a	different	volume	after	installation.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

support_move="yes"

DSM	Requirement:	6.2-22306

Field	Name:	exclude_model

Description:	List	the	model	names	where	the	package	can't	be	used	to	install	the	package.
Note:	Be	careful	to	use	this	exclude_model	field.	If	the	package	has	different	exclude_model	value	in	the	different
versions,	the	end	user	can	install	the	package	in	the	specific	version	without	some	model	values	of	exclude_model.

Value:	model	values	are	separated	with	a	space.
Default	Value:	(Empty)
Example:

exclude_model="synology_cedarview_713+	synology_kvmx64_virtualdsm"

DSM	Requirement:	7.0-40329

Optional	Fields

51

Field	Name:	use_deprecated_replace_mechanism

Description:	if	set	to	"yes",	replacee	will	be	uninstalled	after	replacer	installed,	and	prereplace	/	postreplace	scripts	will	not	be
executed.	Otherwise,	replacee	will	be	uninstalled	before	replacer	installed,	and	prereplace	/	postreplace	will	be	executed.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

install_replace_packages="packageA"

use_deprecated_replace_mechanism="yes"

DSM	Requirement:	7.0-40340

Field	Name:	install_on_cold_storage
Description:	if	set	to	"yes",	this	package	can	be	installed	on	cold	storage,	which	has	very	large	space	for	data	storage.
Value:	"yes"/"no"
Default	Value:	"no"
Example:

install_on_cold_storage="yes"

DSM	Requirement:	7.0-40726

Optional	Fields

52

package.tgz
The	package.tgz	is	a	compressed	file	(tgz	/	xz)	containing	all	the	files	you	would	need	when	bringing	up	your	applications	such	as:

executable	files
library	files
UI	files
configuration	files

You	can	use	pkg_make_package	function	to	create	the	package.tgz	instead	of	packing	it	manually.

Once	the	package	is	installed,	your	package.tgz	will	be	extracted	to		/volume?/@appstore/[your_pkg_name]/		or
	/usr/local/packages/@appstore/[your_pkg_name]/		folder	(depending	on	the	install_type	in	INFO).	In	the	meantime,	there	will	be	a	soft
link	at		/var/packages/[your_pkg_name]/target		pointing	to	the	assigned	folder.

In	addition	to	the		target		directory,	system	will	also	create	other	directories	for	package	to	store	its	data	for	different	purposes.
Detailed	information	can	be	found	HERE.

package.tgz

53

Launch	an	App
This	section	introduces	how	to	launch	an	app	by	packaging	the	minimal	files	needed	for	the	UI	inside	the	package.tgz.

	package.tgz

			├──	ui																							(specified	by	dsmuidir	in	INFO)

			|			├──	config															(the	UI	config	file	describing	components	in	JavaScript	file	and	their	dependencies)

			|			├──	ExamplePackage.js				(the	main	JavaScript	file	of	the	package)

			|			└──	style.css												(the	style	of	the	package)

			└──

To	prepare	the	files	(UI	config,	main	JavaScript	file)	in	package.tgz,	organize	your	application	source	code	in	the		ui		folder	in	your
package	project.	You	can	also	use	other	names,	but	remember	to	match	it	with	the		dsmuidir		specified	in	the		INFO		file	during
installation.

The	project	structure	of	the	application	ui	might	look	like	this:

ExamplePackage

└──	ui

				├──	app.config

				├──	config.define

				├──	Makefile

				├──	package.json

				├──	pnpm-lock.yaml

				├──	src

				│			├──	App.vue

				│			│──	components

				│			│			└──	CustomForm.vue

				│			├──	main.js

				│			└──	styles

				└──	webpack.config.js

Here	is	the	detailed	information	about	the	files	mentioned	above:

First,	to	generate	the		config		file	in	package.tgz,	prepare		app.config	,		config.defind	,	and	the		Makefile	

app.config

	app.config		describes	the	components	in	the	package.

Format:

{

				"[Classname]":	{

								"[Attribute]":	"[Value]",

								...

				}

}

Example:

{

				"SYNO.SDS.App.ExamplePackage.Instance":	{

								"type":	"app",

								"title":	"ExamplePackage",

								"appWindow":	"SYNO.SDS.App.ExamplePackage.Instance",

								"allUsers":	true,

								"allowMultiInstance":	false,

								"hidden":	false,

								"icon":	"images/icon.png"

				}

}

UI	files

54

Attribute	details:

Attribute Description Value

type specifies	the	type	of	this	class String

title the	title	of	package	application String

appWindow specifies	the	classname	of	the	AppWindow	when	opening	this	application String

allUsers set	all	users	can	use	this	app Boolean

allowMultiInstance application	can	be	launched	more	then	one	instance Boolean

hidden set	true	to	hide	the	package	in	the	StartMenu Boolean

icon application	icon String

config.define

	config.define		defines	the	deployed	JavaScript	file	name	which	is	installed	in	package.tgz.	The		JSfiles		should	include	all	the
JavaScript	files	you	want	to	deploy,	typically	the	output	of	a	bundling	tool	(e.g.	webpack).

Example:

{

				"ExamplePackage.js":{

								"JSfiles":	[

												"dist/example-package.bundle.js"

],

								"params":	"-s	-c	skip"

				}

}

Makefile

This		Makefile		is	used	to	manage	the	build	process	of	package	application.

include	/env.mak

include	../Makefile.inc

JS_DIR="dist"																																	#	the	directory	where	your	JavaScript	files	are	stored

JS_NAMESPACE="SYNO.SDS.App.ExamplePackage"				#	the	class	name	prefix	in	your	project,	which	should	match	the	namespace	define

d	in	main.js

BUNDLE_JS="dist/example-package.bundle.js"

BUNDLE_CSS="dist/style/example-package.bundle.css"

.PHONY:	all	$(SUBDIR)

all:	$(BUNDLE_JS)	style.css	$(SUBDIR)

$(BUNDLE_JS):

				#	Snpm	is	a	tool	to	install	npm	modules	in	Synology

				/usr/local/tool/snpm	install

				/usr/local/tool/snpm	run	build

				$(MAKE)	-f	Makefile.js.inc	JSCompress	JS_NAMESPACE=\"${JS_NAMESPACE}\"	JS_DIR=${JS_DIR}

$(SUBDIR):

				@echo	"===>"	$@

				$(MAKE)	-C	$@	INSTALLDIR=$(INSTALLDIR)/$@	DESTDIR=$(DESTDIR)	PREFIX=$(PREFIX)	$(MAKECMDGOALS);

				@echo	"<==="	$@

style.css:	$(BUNDLE_JS)

				cp	$(BUNDLE_CSS)	$@

clean:	clean_JSCompress	$(SUBDIR)

				rm	$(BUNDLE_JS)

install:	$(SUBDIR)	install_JSCompress

UI	files

55

				[-d	$(INSTALLDIR)/dist/assets]	||	install	-d	$(INSTALLDIR)/dist/assets

				install	--mode	644	dist/assets/*.png	$(INSTALLDIR)/dist/assets

include	Makefile.js.inc

package.json

Also,	you	need	a		package.json		for	configure	and	describe	the	dependencies	for	your	application.

{

				"name":	"ExamplePackage",

				"private":	true,

				"version":	"1.0.0",

				"description":	"",

				"main":	"webpack.config.js",

				"scripts":	{

								"build":	"webpack	--mode	production",

								"dev":	"webpack	--watch	--progress	--mode	development"

				},

				"keywords":	[],

				"author":	"",

				"license":	"ISC",

				"devDependencies":	{

								"@babel/core":	"7.18.6",

								"babel-loader":	"8.0.6",

								"terser-webpack-plugin":	"5.3.10",

								"vue":	"2.7.14",

								"vue-loader":	"15.10.1",

								"vue-template-compiler":	"2.7.14",

								"webpack":	"5.91.0",

								"webpack-cli":	"5.1.4"

				}

}

main.js

The	file	serves	as	the	entry	point	for	your	bundle	tool	and	initializes	of	your	Vue	application	by	setting	up	the	necessary	components
and	configurations.

import	Vue	from	'vue';

import	App	from	'./App.vue';

SYNO.namespace('SYNO.SDS.App.ExamplePackage');

//	@require	SYNO.SDS.App.ExamplePackage.ModalWindow

SYNO.SDS.App.ExamplePackage.Instance	=	Vue.extend({

				components:	{	App	},

				template:	'<App/>',

});

App.vue

Your	app	instance	is	defined	here,	allowing	you	to	write	Vue	components	to	render	your	application,	for	more	detail	about	UI
framework	please	refer	to	DSM	UI	Framework.

<template>

				<v-app-instance	class-name="SYNO.SDS.App.ExamplePackage.Instance">

								<v-app-window	width=850	height=574	ref="appWindow"	:resizable="false"	syno-id="SYNO.SDS.App.ExamplePackage.Window">

												<div	class="example-package-app">

																Hello	Synology	Package

												</div>

								</v-app-window>

				</v-app-instance>

</template>

<script>

export	default	{

UI	files

56

				data()	{

								return	{

								};

				},

				methods:	{

								close()	{

												this.$refs.appWindow.close();

								},

				},

}

</script>

<style	lang="scss">

.example-package-app	{

				height:	100%;

}

</style>

webpack.config.js

const	path	=	require('path');

const	webpack	=	require('webpack');

const	VueLoaderPlugin	=	require('vue-loader/lib/plugin');

module.exports	=	async	(env,	argv)	=>	{

				const	isDevelopment	=	argv.mode	===	'development';

				return	{

								mode:	isDevelopment	?	'development'	:	'production',

								devtool:	isDevelopment	?	'inline-cheap-module-source-map'	:	false,

								module:	{

												rules:	[

																{

																				test:	/\.vue$/,

																				loader:	'vue-loader'

																},

																{

																				exclude:	/node_modules/,

																				test:	/\.js$/,

																				use:	{

																								loader:	'babel-loader',

																								options:	{

																												rootMode:	'upward'

																								}

																				}

																},

]

								},

								/*	your	package	entry	with	Vue.extend	and	SYNO.namespace	defined	*/

								entry:	'./src/main.js',

								output:	{

												/*	Need	to	write	in	config.define	*/

												filename:	'example-package.js',

												path:	path.resolve('dist')

								},

								resolve:	{

												extensions:	['.js',	'.vue',	'.json']

								},

								plugins:	[

												new	VueLoaderPlugin()

],

								externals:	{

												'vue':	'Vue'

								},

								watchOptions:	{

												poll:	true

								}

				};

};

UI	files

57

UI	files

58

scripts
This	folder	contains	shell	scripts	controlling	the	lifecycle	of	a	package.

Script
Name Required Description

preinst O It	can	be	used	to	check	conditions	before	installation	but	not	to	make	side	effects	onto	the
system.	Package	installation	will	be	aborted	for	non-zero	returned	value.

postinst O It	can	be	used	to	prepare	environment	for	package	after	installed.	Package	status	will	become
corrupted	for	non-zero	returned	value.

preuninst O It	can	be	used	to	check	conditions	before	uninstallation	but	not	to	make	side	effects	onto	the
system.	Package	uninstallation	will	be	aborted	for	non-zero	returned	value.

postuninst O It	can	be	used	to	cleanup	environment	for	package	after	uninstalled.

preupgrade O It	can	be	used	to	check	conditions	before	upgrade	but	not	to	make	side	effects	onto	the	system.
Package	upgrade	will	be	aborted	for	non-zero	returned	value.

postupgrade O It	can	be	used	to	prepare	environment	for	package	after	upgraded.	Package	status	will	become
corrupted	for	non-zero	returned	value.

prereplace X It	can	be	used	to	do	data	migration	when	install_replace_packages	is	defined	in		INFO		for
package	replacement.	Package	replacement	will	be	aborted	for	non-zero	returned	value.

postreplace X It	can	be	used	to	do	data	migration	when	install_replace_packages	is	defined	in		INFO		for
package	replacement.	Package	replacement	will	be	aborted	for	non-zero	returned	value.

start-stop-
status O It	can	be	used	to	control	package	lifecycle.

The	simplest	implemenation	of	script	is	just	doing	nothing:

#!/bin/sh

exit	0

Please	refer	to	Script	Messages	for	mechanism	to	show	messages	to	users.

start-stop-status

#!/bin/sh

case	"$1"	in

				start)

								;;

				stop)

								;;

				status)

								;;

esac

exit	0

This	script	is	used	to	start,	stop	a	package	and	detect	running	status.	DSM	would	call	this	script	with	different	parameters	in	different
scenario:

start:	When	a	user	runs	the	package	or	the	system	is	turning	on,	the	package	should	do	its	start	operation.

stop:	When	a	user	stops	the	package	or	the	system	is	turning	off,	the	package	should	do	its	stop	operation.

scripts

59

status:	When	the	package	status	is	being	checked,	the	following	exit	codes	should	be	returned	according	to	its	status:

	0:	package	is	running.

	1:	program	of	package	is	dead	and	/var/run	pid	file	exists.

	2:	program	of	package	is	dead	and	/var/lock	lock	file	exists

	3:	package	is	not	running

	4:	package	status	is	unknown

	150:	package	is	broken	and	should	be	reinstalled.

prestart:	If	precheckstartstop	in		INFO		is	set	to		yes	,	the	package	could	check	if	it	is	allowed	to	be	started.

Note:	It	will	also	run	before	starting	a	package	at	booting	up	after	DSM	7.0.

prestop:	If	precheckstartstop	in		INFO		is	set	to		yes	,	the	package	could	check	if	it	is	allowed	to	be	stopped.

Note:	It	won't	run	before	stopping	a	package	at	shutting	down.

Execution	Order

Installation

1.	 prereplace
2.	 preinst
3.	 postinst
4.	 postreplace
5.	 start-stop-status	with	prestart	argument	if	end	user	chooses	to	start	it	immediately
6.	 start-stop-status	with	start	argument	if	end	user	chooses	to	start	it	immediately

Upgrade

1.	 start-stop-status	with	prestop	argument	if	it	has	been	started	(old)
2.	 start-stop-status	with	stop	argument	if	it	has	been	started	(old)
3.	 preupgrade	(new)
4.	 preuninst	(old)
5.	 postuninst	(old)
6.	 prereplace	(new)
7.	 preinst	(new)
8.	 postinst	(new)
9.	 postreplace	(new)
10.	 postupgrade	(new)
11.	 start-stop-status	with	prestart	argument	if	it	was	started	before	being	upgraded	(new)
12.	 start-stop-status	with	start	argument	if	it	was	started	before	being	upgraded	(new)

Uninstallation

1.	 start-stop-status	with	prestop	argument	if	it	has	been	started
2.	 start-stop-status	with	stop	argument	if	it	has	been	started
3.	 preuninst
4.	 postuninst

Start

1.	 start-stop-status	with	prestart	argument
2.	 start-stop-status	with	start	argument

scripts

60

Stop

1.	 start-stop-status	with	prestop	argument
2.	 start-stop-status	with	stop	argument

scripts

61

Script	Environment	Variables
Several	variables	are	exported	by	Package	Center	and	can	be	used	in	the	scripts.	Descriptions	of	the	variables	are	given	as	below:

SYNOPKG_PKGNAME:	Package	identify	which	is	defined	in	INFO.
SYNOPKG_PKGVER:	Package	version	which	is	defined	in	INFO.	The	value	will	be	new	version	of	package	when	it	is	upgrading.
SYNOPKG_PKGDEST:	Target	directory	where	the	package	is	stored.
SYNOPKG_PKGDEST_VOL:	Target	volume	where	the	package	is	stored.
SYNOPKG_PKGPORT:	adminport	port	which	is	defined	in	INFO.	This	port	will	be	occupied	by	this	package	with	its
management	interface.
SYNOPKG_PKGINST_TEMP_DIR:	The	temporary	directory	where	the	package	are	extracted	when	installing	or	upgrading	it.
SYNOPKG_TEMP_LOGFILE:	A	temporary	file	path	for	a	script	to	log	information	or	error	messages.
SYNOPKG_TEMP_UPGRADE_FOLDER:	The	temporary	directory	when	the	package	is	upgrading.	You	can	move	the	files	from
the	previous	version	of	the	package	to	it	in	preupgrade	script	and	move	them	back	in	postupgrade.
SYNOPKG_DSM_LANGUAGE:	End	user's	DSM	language.
SYNOPKG_DSM_VERSION_MAJOR:	End	user’s	major	number	of	DSM	version	which	is	formatted	as	[DSM	major	number].
[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_MINOR:	End	user’s	minor	number	of	DSM	version	which	is	formatted	as	[DSM	major	number].
[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_VERSION_BUILD:	End	user’s	DSM	build	number	of	DSM	version	which	is	formatted	as	[DSM	major
number].[DSM	minor	number]-[DSM	build	number].
SYNOPKG_DSM_ARCH:	End	user’s	DSM	CPU	architecture.	Please	refer	Appendix	A:	Platform	and	Arch	Value	Mapping	Table
to	more	information
SYNOPKG_PKG_STATUS :	Package	status	presented	by	these	values:	INSTALL,	UPGRADE,	UNINSTALL,	START,	STOP	or
empty.
1.	 INSTALL	will	be	set	as	the	status	value	in	the	preinst	and	postinst	scripts	while	the	package	is	installing.	If	the	user	chooses

to	“start	after	installation”	at	the	last	step	of	the	installation	wizard,	the	value	will	be	set	to	INSTALL	in	the	start-stop-status
script	when	the	package	is	started.

2.	 UPGRADE	will	be	set	as	the	status	value	in	the	preupgrade,	preuninst,	postunist,	preinst,	postinst	and	postupgrade
scripts	sequentially	while	the	package	is	upgrading.	If	the	package	has	already	started	before	upgrade,	the	value	will	be	set	to
UPGRADE	in	the	start-stop-status	script	when	the	package	is	started	or	stopped.

3.	 UNINSTALL	will	be	set	as	the	status	value	in	the	preuninst	and	postunist	scripts	while	the	package	is	un-installing.	If	the
package	has	already	started	before	un-installation,	the	value	will	be	set	to	UNINSTALL	in	the	start-stop-status	script	when
the	package	is	stopped.

4.	 If	the	user	starts	or	stops	a	package	in	the	Package	Center,	START	or	STOP	will	be	set	as	the	status	value	in	the	start-stop-
status	script.

5.	 When	the	NAS	is	booting	up	or	shutting	down,	its	status	value	will	be	empty.
SYNOPKG_OLD_PKGVER:	Old	package	version	which	is	defined	in	INFO	during	upgrading.
SYNOPKG_TEMP_SPKFILE:	The	location	of	package	spk	file	is	temporarily	stored	in	DS	when	the	package	is
installing/upgrading.
SYNOPKG_USERNAME:	The	user	name	who	installs,	upgrades,	uninstalls,	starts	or	stops	the	package.	If	the	value	is	empty,	the
action	is	triggered	by	DSM,	not	by	the	end	user.
SYNOPKG_PKG_PROGRESS_PATH:	A	temporary	file	path	for	a	script	to	showing	the	progress	in	installing	and	upgrading	a
package.

Note:	

1.	 The	progress	value	is	between	0	and	1.
2.	 Example:

flock	-x	"$SYNOPKG_PKG_PROGRESS_PATH"	-c	echo	0.80	>	"$SYNOPKG_PKG_PROGRESS_PATH"

Script	Environment	Variables

62

Script	Environment	Variables

63

Show	Messages	to	Users

Show	Message	as	Script	Result

If	you	want	to	send	a	prompt	users	with	messages	after	they	installed,	upgraded,	uninstalled,	started,	or	stopped	a	package,	you
can	use	the		$SYNOPKG_TEMP_LOGFILE		variable	in	related	scripts.	For	example:

echo	"Hello	World!!"	>	$SYNOPKG_TEMP_LOGFILE

If	you	want	to	prompt	users	according	to	their	language,	you	can	use		$SYNOPKG_DSM_LANGUAGE		variable	for	language	abbreviation	as
shown	in	the	example	below:

case	$SYNOPKG_DSM_LANGUAGE	in

								chs)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								cht)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								csy)

												echo	"Český"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								dan)

												echo	"Dansk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								enu)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								fre)

												echo	"Français"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ger)

												echo	"Deutsch"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								hun)

												echo	"Magyar"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ita)

												echo	"Italiano"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								jpn)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								krn)

												echo	"" 	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nld)

												echo	"Nederlands"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								nor)

												echo	"Norsk"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								plk)

												echo	"Polski"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptb)

												echo	"Português	do	Brasil"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								ptg)

												echo	"Português	Europeu"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								rus)

												echo	"Русский"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

Script	Messages

64

								spn)

												echo	"Español"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								sve)

												echo	"Svenska"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								trk)

												echo	"Türkçe"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

								*)

												echo	"English"	>	$SYNOPKG_TEMP_LOGFILE	

								;;

				esac

Please	refer	to	"scripts"	and	"Script	Environment	Variables"	sections	for	more	information.

Show	Message	as	Desktop	Notification

It	is	possible	to	use		/usr/syno/bin/synodsmnotify		executable	to	send	desktop	notifications	to	users.	The	notification	title	/	message
must	be	an	I18N	string.

/usr/syno/bin/synodsmnotify	-c	[app_id]	[user_or_group]	[i18n_string_for_title]	[i18n_string_for_msg]

/usr/syno/bin/synodsmnotify	-c	com.company.App1	admin	MyPackage:app_tree:index_title	MyPackage:app_tree:node_1

/usr/syno/bin/synodsmnotify	-c	com.company.App1	@administrators	MyPackage:app_tree:index_title	MyPackage:app_tree:node_1

Notification	title	and	message	here	should	be	in	the	format	of		[package_id]:[i18n_section]:[i18n_key]		where		package_id		is	the
	package		value	in	package		INFO		file.	I18N	string	example	can	be	found	in	I18N	page.	Remember	to	specify	desktop	notification
strings	to		preloadTexts		field	in	application	config.

Script	Messages

65

conf
The	conf	folder	contains	the	following	files:

File/Folder
Name Required Description File/Folder

Type
DSM

Requirement

PKG_DEPS X Define	dependency	between	packages	with	restrictions
of	DSM	version. File 4.2-3160

PKG_CONX X Define	conflicts	between	packages	with	restrictions	of
DSM	version. File 4.2-3160

privilege O Define	file	privilege	and	execution	privilege	to	secure
the	package. File 6.2-5891

resource X Define	system	resources	that	can	be	used	in	the
lifecycle	of	package. File 6.2-5941

Since	DSM	7.0,	all	packages	are	forced	to	lower	the	privilege	explicitly.	The		privilege		must	be	provided	for	package	to	work.

conf

66

Privilege
DSM	7.0,	packages	are	forced	to	lower	the	privilege	by	applying	privilege	mechanism	explicitly.

To	reduce	security	risks,	package	should	run	as	an	user	rather	than		root	.	Package	can	apply	such	mechanism	by	providing	a
configuration	file	named		pivilege	:

With	the	configuration,	package	developer	is	capable	to

Control	default	user	/	group	name	of	process	in		scripts	

Control	permission	of	files	in		package.tgz	

Control	file	capabilities	in		package.tgz	

Control	if	special	system	resources	are	accessible

To	overcome	the	limitation	that	normal	user	cannot	be	used	to	do	privileged	operations,	we	provide	a	way	for	package	to	request	system
resources.	Please	refer	to	Resource	for	more	information.

Setup	privilege	configuration
Just	create	a	file	at		conf/privilege		with	prefered	configuration.

{

				"defaults":	{

								"run-as":	"package"

				}

}

privilege

67

Resource
Packages	can	obtain	system	resources	even	in	lower	privilege	identity	if	they	apply	this	mechanism.

Steps	to	setup	resource	config

1.	 Find	out	the	resources	you	want	from	Resource	List

2.	 Check	if	the	corresponding	Timing	of	selected	resource	is	satisfied.

3.	 Create	a	file	at		conf/resource		with	prefered	configuration.

{

				"data-share":	{

								"shares":	[

												{

																"name":	"MyShareFolderName",

																"permission":	{

																				"ro":	["MyUserName"]

																}

												}

]

				}

}

The	instance	handling	the	resource	request	is	called		worker	.

resource

68

PKG_DEPS

The	PKG_DEPS	is	similar	to	install_dep_packages	key	in	INFO	file,	but	it	additionally	defines	the	restriction	according	to	specific
OS	versions.

priority	of		PKG_DEPS		is	higher	than		install_dep_packages		in		INFO	

Each	configuration	file	is	defined	in	standard	.ini	file	format	with	key/value	pairs	and	sections.	A	section	describes	a	unique	name	of
dependent/conflicting	package.	Each	section	contains	information	about	the	requirements	of	package	versions	and	the	restriction	of	OS
versions.

Key Availability Description Value

pkg_min_ver DSM4.2 Minimum	version	of	dependent	package. Package	version

pkg_max_ver DSM4.2 Maximum	version	of	dependent	package. Package	version

dsm_min_ver DSM4.2	-
DSM7.1

Minimum	required	DSM	version.	Replaced	by
	os_min_ver		since	DSM7.2

X.Y-Z	
DSM	major	number,	DSM	minor
number,	DSM	build	number

dsm_max_ver DSM4.2	-
DSM7.1

Maximum	required	DSM	version.	Replaced	by
	os_max_ver		since	DSM7.2

X.Y-Z	
DSM	major	number,	DSM	minor
number,	DSM	build	number

os_min_ver DSM7.2-
60112 Minimum	required	OS	version.

X.Y-Z	
OS	major	number,	OS	minor	number,

OS	build	number

os_max_ver DSM7.2-
60112 Maximum	required	OS	version.

X.Y-Z	
OS	major	number,	OS	minor	number,

OS	build	number

;	Your	package	depends	on	Package	A	in	any	version

[Package	A]

;	Your	package	depends	on	Package	B	version	2	or	newer

[Package	B]

pkg_min_ver=2

;	Your	package	depends	on	Package	C	with	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	depends	on	Package	D	with	version	2	or	newer	but	it	will	be	ignored	when	OS	version	is	smaller	than	7.2-60000

[Package	D]

os_min_ver=7.2-60000

pkg_min_ver=2

;	Your	package	depends	on	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	OS	version	is	bigger	than	7.2-60000

[Package	E]

os_max_ver=7.2-60000

pkg_min_ver=2

PKG_DEPS

69

PKG_CONX

The	PKG_CONX	is	similar	to	install_conflict_packages	key	in	INFO	file,	but	it	additionally	defines	the	restriction	according	to
specific	OS	versions.

priority	of		PKG_CONX		is	higher	than		install_conflict_packages		in		INFO	

Each	configuration	file	is	defined	in	standard	.ini	file	format	with	key/value	pairs	and	sections.	A	section	describes	a	unique	name	of
dependent/conflicting	package.	Each	section	contains	information	about	the	requirements	of	package	versions	and	the	restriction	of	OS
versions.

Key Availability Description Value

pkg_min_ver DSM4.2 Minimum	version	of	conflicting	package. Package	Version

pkg_max_ver DSM4.2 Maximum	version	of	conflicting	package. Package	Version

dsm_min_ver DSM4.2	-
DSM7.1

Minimum	required	DSM	version.	Replaced	by
	os_min_ver		since	DSM7.2

X.Y-Z	
DSM	major	number,	DSM	minor
number,	DSM	build	number

dsm_max_ver DSM4.2	-
DSM7.1

Maximum	required	DSM	version.	Replaced	by
	os_max_ver		since	DSM7.2

X.Y-Z	
DSM	major	number,	DSM	minor
number,	DSM	build	number

os_min_ver DSM7.2-
60112 Minimum	required	OS	version.

X.Y-Z	
OS	major	number,	OS	minor	number,

OS	build	number

os_max_ver DSM7.2-
60112 Maximum	required	OS	version.

X.Y-Z	
OS	major	number,	OS	minor	number,

OS	build	number

;	Your	package	conflicts	with	Package	A	in	any	version

[Package	A]

;	Your	package	conflicts	with	Package	B	version	2	or	newer

[Package	B]

pkg_min_ver=2

;	Your	package	conflicts	with	Package	C	version	2	or	older

[Package	C]

pkg_max_ver=2

;	Your	package	conflicts	with	Package	D	version	2	or	newer,	but	it	will	be	ignored	when	OS	version	is	smaller	than	7.2-60000

[Package	D]

os_min_ver=7.2-60000

pkg_min_ver=2

;	Your	package	conflicts	with	Package	E	with	version	2	or	newer	but	it	will	be	ignored	when	OS	version	is	bigger	than	7.2-6000

0

[Package	E]

os_max_ver=7.2-60000

pkg_min_ver=2

PKG_CONX

70

Wizard	UI	Files
WIZARD_UIFILES	7.2.2

wizard

71

WIZARD_UIFILES	[7.2.2]
install_uifile,	upgrade_uifile,	and	uninstall_uifile	are	files	which	describe	UI	components	in	JSON	format.	They	are	stored	in	the
“WIZARD_UIFILES”	folder.	During	the	installation,	upgrading,	and	un-installation	processes,	these	UI	components	will	appear	in	the
wizard.	Once	these	components	are	selected,	their	keys	will	be	set	in	the	script	environment	variables	with	true,	false,	or	text	values.

These	files	can	be	regarded	as	user	settings	or	used	to	control	the	flow	of	script	execution.

install_uifile:	Describes	UI	components	for	the	installation	process.	During	the	process	of	the	preinst	and	postinst	scripts,	these
component	keys	and	values	can	be	found	in	the	environment	variables.
upgrade_uifile:	Describes	UI	components	for	the	upgrade	process.	During	the	process	of	the	preupgrade,	postupgrade,
preuninst,	postuninst,	preinst	and	postinst	scripts,	these	component	keys	and	values	can	be	found	in	the	environment	variables.
uninstall_uifile:	Describes	UI	components	for	the	un-installation	process.	During	the	process	of	the	preuninst	and	postuninst
scripts,	these	component	keys	and	values	can	be	found	in	the	environment	variables.

If	you	would	like	to	run	a	script	to	generate	the	wizard	dynamically,	you	can	add	install_uifile.sh,	upgrade_uifile.sh	and
uninstall_uifile.sh	files,	they	are	run	before	installing,	upgrading,	and	uninstalling	a	package	respectively	to	generate	UI	components	in
JSON	format	and	write	to	SYNOPKG_TEMP_LOGFILE.	Script	environment	variables	in	these	scripts	are	available	in	these	scripts.
Please	refer	to	"Script	Environment	Variables"	for	more	information.

If	you	would	like	to	localize	the	descriptions	of	UI	components,	you	can	add	a	language	abbreviation	suffix	to	the	file
“install_uifile_[DSM	language],”	“upgrade_uifile_[DSM	language]”,	“uninstall_uifile_[DSM	language]”,
“install_uifile_[DSM	language].sh,”	“upgrade_uifile_[DSM	language].sh”	or	“uninstall_uifile_[DSM	language].sh”	in	this
folder.	For	example,	in	order	to	perform	installation	in	Traditional	Chinese,	[DSM	language]	should	be	replaced	with	“cht”	as	follows:
“install_uifile_cht”.

You	can	download	our	template	package	from	https://github.com/SynologyOpenSource/ExamplePackages	and	place	the
	ExamplePackages/ExamplePackage		directory	at		/toolkit/source/ExamplePackage	.

└──	WIZARD_UIFILES

				├──	create_install_uifile.sh

				├──	create_uninstall_uifile.sh

				├──	create_upgrade_uifile.sh

				├──	Makefile

				├──	package.json

				├──	pnpm-lock.yaml

				├──	src

				│			├──	remove-entry.js

				│			├──	remove-setting.vue

				├──	uifile_setting.sh

				└──	webpack.config.js

In	DSM	7.2.2,	we	have	introduced	a	new	way	to	create	wizard	UI	files.	This	new	method	involves	using	a	render	function	to	generate
the	wizard	UI	file.	The	render	function	is	a	Vue.js	Framework	structured	function.	Before	starting,	developers	should	be	familiar	with
the	basic	concepts	of	the	Vue.js	Framework	to	create	wizard	UI	files	more	efficiently.

UI	Framework	related	documents
In	our	DSM	7.2.2,	the	default	Vue.js	version	is	2.7.14.	This	means	that	our	wizard	UI	files	are	built	based	on	Vue.js	2.7.14.	Developers
can	refer	to	the	official	Vue2	documentation	to	learn	about	the	basic	concepts	of	Vue.js.

Basic	knowledge

Vue2	Official	Document
Webpack
NPM

WIZARD_UIFILES	7.2.2

72

https://github.com/SynologyOpenSource/ExamplePackages
https://v2.vuejs.org/v2/guide/
https://webpack.js.org/
https://www.npmjs.com/

PNPM

Note:

1.	 You	can	refer	to	the	WIZARD_UIFILES	folder	in	ExamplePackage	to	learn	how	to	create	wizard	UI	files.

Example	of	the	file	in	JSON	format:

[{

				"custom_render_fn":	"/*	render	function	*/",	//	needed	compiled	by	webpack

				"custom_render_name":	"remove_setting"	//	render	name

}]

Package.json

package.json

{

				"name":	"WIZARD_UIFILES",

				"private":	true,

				"version":	"1.0.0",

				"description":	"",

				"main":	"webpack.config.js",

				"scripts":	{

								"build":	"webpack	--mode	production",

								"dev":	"webpack	--watch	--progress	--mode	development"

				},

				"keywords":	[],

				"author":	"",

				"license":	"ISC",

				"devDependencies":	{

								"@babel/core":	"7.18.6",

								"babel-loader":	"8.0.6",

								"terser-webpack-plugin":	"5.3.10",

								"vue":	"2.7.14",

								"vue-loader":	"15.10.1",

								"vue-template-compiler":	"2.7.14",

								"webpack":	"5.91.0",

								"webpack-cli":	"5.1.4"

				}

}

install	the	dependencies

pnpm	install

Webpack	settings

const	path	=	require('path');

const	fs	=	require('fs');

const	webpack	=	require('webpack');

const	VueLoaderPlugin	=	require('vue-loader/lib/plugin');

const	STRING_PATH	=	'/source/uistring/webstation';

const	{	getString	}	=	require('/source/synopkgutils/string.js');

/**

	*	Retrive	the	strings	from	the	uistring	folder,	for	example	retrieve	the	wizard	strings	with	following	entries:

	['wizard',	'remove_setting_title']

	['wizard',	'remove_setting_desc']

	*/

const	stringsEntries	=	[

				['wizard',	'remove_setting_title'],

WIZARD_UIFILES	7.2.2

73

https://pnpm.io/
https://github.com/SynologyOpenSource/ExamplePackages
https://docs.npmjs.com/cli/v10/configuring-npm/package-json

				['wizard',	'remove_setting_desc']

];

function	resolve	(dir)	{

				return	path.join(__dirname,	dir)

}

async	function	traverseStringPath()	{

				const	texts	=	{};

				fs.readdirSync(STRING_PATH).forEach(dir	=>	{

								const	lang	=	path.basename(dir);

								const	langStringFile	=	`${STRING_PATH}/${lang}/strings`;

								texts[lang]	=	{};

								for	(const	[section,	key]	of	stringsEntries)	{

												texts[lang][section]	=	texts[lang][section]	??	{};

												texts[lang][section][key]	=	getString(langStringFile,	section,	key);

								}

				});

				return	texts;

}

module.exports	=	async	(env,	argv)	=>	{

				const	isDevelopment	=	argv.mode	===	'development';

				return	{

								mode:	isDevelopment	?	'development'	:	'production',

								devtool:	isDevelopment	?	'inline-source-map'	:	false,

								module:	{

												rules:	[

																{

																				test:	/\.vue$/,

																				loader:	'vue-loader'

																},

																{

																				exclude:	/node_modules/,

																				test:	/\.js$/,

																				use:	{

																								loader:	'babel-loader',

																								options:	{

																												rootMode:	'upward'

																								}

																				}

																},

]

								},

								resolve:	{

												extensions:	['.js',	'.vue',	'.json'],

								},

								entry:	{

												/*	puts	your	package	entry	here	*/

												remove_entry:	'./src/remove-entry.js',

								},

								output:	{

												library:	{

																name:	'SYNO.SDS.PkgManApp.Custom.JsonpLoader.load',

																type:	'jsonp',

												},

												path:	resolve('dist'),

												filename:	'[name].bundle.js'

								},

								plugins:	[

												new	VueLoaderPlugin(),

												new	webpack.DefinePlugin({

																__STRINGS__:	JSON.stringify(await	traverseStringPath())

												}),

],

								externalsType:	'window',

								externals:	{

												'vue':	'Vue',

								},

								watchOptions:	{

												poll:	true,

								},

WIZARD_UIFILES	7.2.2

74

				};

}

Start	writing	your	own	wizard	layout
Before	writing,	you	need	to	understand	the	basic	concepts	of	Vue.js.	To	use	the	wizard	layout,	we	must	follow	a	few	guidelines:

The	entry	file	must	return	an	object	in	the	format		{	name:	'your_render_function_name',	render:	YourRenderFunction	}	.

The	Vue.js	file	must	contain	a	pkg-center-step-content	component.

Use	the	composite	method	to	call	the	functions	provided	by	the	package	center.

Functions	provided	by	the	package	center

	SYNO.SDS.PkgManApp.Custom.useHook.props		is	used	to	obtain	the	props	that	will	be	provided	by	the	package	center.

	SYNO.SDS.PkgManApp.Custom.useHook(props)		is	used	to	obtain	the	functions	provided	by	the	package	center,	which	are	as	follows:

{

				getNext:	()	=>	String,	//	Get	the	ID	of	the	next	step

				checkState:	()	=>	void,	//	Update	the	wizard	footer	information	based	on	the	current	information,	e.g.:	enable/disable	the

	previous	step	button

}

In	your	Vue.js	file,	please	use	the	setup	function	to	obtain	the	functions	provided	by	the	package	center	and	return	the	following
variables:

{

				getNext,

				checkState,

				headline,

				getValues,

}

Property Description Value

getNext Get	the	ID	of	the	next	step ()	=>	String

checkState Update	the	wizard	footer	information	based	on	the	current	information ()	=>	void

headline Display	the	wizard	title String

getValues The	package	center	will	use	this	function	to	obtain	the	data	set	by	the	wizard ()	=>	Object[]

remove-entry.js

import	RemoveSetting	from	'./remove-setting.vue';

export	default	{

				name:	'remove_setting',	//	your	render	function	name

				render:	RemoveSetting,

};

remove-setting.vue

To	create	the	corresponding	form	layout,	you	can	refer	to	the	following	example.	Since	DSM	provides	a	variety	of	globally	registered
Vue.js	components,	please	refer	to	the	DSM	UI	Framework	for	details	on	the	available	Vue.js	components	on	DSM.

<template>

				<pkg-center-step-content>

WIZARD_UIFILES	7.2.2

75

								<v-form	syno-id="form">

												<v-form-item	syno-id="form-item"	label="Password">

																<v-input	type="password"	v-model="password"	syno-id="password"	/>

												</v-form-item>

												<v-form-item	syno-id="form-item"	label="Confirm	Password">

																<v-input	type="password"	v-model="confirmPassword"	syno-id="confirm-password"	/>

												</v-form-item>

												<v-form-item	syno-id="form-item"	:label="removeSettingTitle">

																<v-checkbox	v-model="valid"	syno-id="checkbox">

																				Checkbox	Value:	{{	valid	}}

																</v-checkbox>

												</v-form-item>

								</v-form>

				</pkg-center-step-content>

</template>

<script>

import	{	$t	}	from	'./utils/uistring';

import	{	defineComponent,	watchEffect,	ref	}	from	'vue';

export	default	defineComponent({

				props:	{

								...SYNO.SDS.PkgManApp.Custom.useHook.props,

				},

				setup(props)	{

								const	{	getNext,	checkState:	_checkState	}	=	SYNO.SDS.PkgManApp.Custom.useHook(props);

								const	valid	=	ref(false);

								const	password	=	ref('');

								const	confirmPassword	=	ref('');

								const	removeSettingTitle	=	$t(_S('lang'),	'wizard',	'remove_setting_title');

								const	headline	=	$t(_S('lang'),	'wizard',	'remove_setting_title');

								const	checkState	=	(owner)	=>	{

												owner	=	owner	??	props.getOwner();

												_checkState(owner);

												const	nextButton	=	owner.getButton('next');

												nextButton.setDisabled(!valid.value);

								};

								const	getValues	=	()	=>	{

												return	[{

																isSelected:	valid.value,

												}];

								};

								watchEffect(()	=>	{

												checkState();

								});

								return	{

								/*	package	center	needed	*/

												getNext,

												checkState,

												headline,

												getValues,

								/*		*/

												valid,

												password,

												confirmPassword,

												removeSettingTitle,

								};

				},

});

</script>

Related	files
uifile_setting.sh

WIZARD_UIFILES	7.2.2

76

#!/bin/bash

REMOVE_ENTRY_JS='./dist/remove_entry.bundle.js'

create_uninstall_uifile.sh

#!/bin/bash

UISTRING_PATH=/source/uistring/webstation

PKG_UTILS="/source/synopkgutils/pkg_util.sh"

.	$PKG_UTILS

.	./uifile_setting.sh

pkg_dump_wizard_content()

{

				local	out=$1

				cat	>	"$out"	<<EOF

[{

				"custom_render_fn":	$(cat	$REMOVE_ENTRY_JS	|	jq	-R),

				"custom_render_name":	"remove_setting"

}]

EOF

}

pkg_dump_uninst_wizard()

{

				if	[!	-d	"$PKG_WIZARD_DIR"];	then

								mkdir	$PKG_WIZARD_DIR

				fi

				pkg_dump_wizard_content	$PKG_WIZARD_DIR/uninstall_uifile

}

PKG_WIZARD_DIR="."

pkg_dump_uninst_wizard

Makefile

include	../Makefile.inc

.PHONY:	all	install	package	clean

UIFILES	=	uninstall_uifile

all	install:

				#	Snpm	is	a	tool	to	install	npm	modules	in	Synology

				/usr/local/tool/snpm	i

				/usr/local/tool/snpm	build

package:	$(UIFILES)

				[-d	$(PACKAGEDIR)/WIZARD_UIFILES]	||	install	-d	$(PACKAGEDIR)/WIZARD_UIFILES

				for	i	in	$(UIFILES);	do	\

								install	-c	-m	644	$$i	$(PACKAGEDIR)/WIZARD_UIFILES;	\

				done

clean:

				@for	i	in	$(UIFILES);	do	$(RM)	$$i	$${i}_*;	done

%:	create_%.sh

				./$<

Note:

1.	 All	words	are	case	sensitive.

WIZARD_UIFILES	7.2.2

77

WIZARD_UIFILES	7.2.2

78

License
The	LICENSE	file	contains	the	licenses	/	user	terms	&	conditions	/	end	user	aggrements	to	show	on	the	package	installation	wizard.	The
package	center	would	open	up	a	dialog	to	show	the	content	of	LICENSE	file	and	provide	a	checkbox	for	user	to	agree	these	terms	on	the
dialog.

How	to	place	LICENSE	file
Prepare	a	file	containing	your	terms	&	conditions	in	plain	text	format	then	put	it	to		/		of	your	package	(the	directory	where	the	INFO
is)

If	the	LICENSE	file	is	properly	put	inside	spk,	the	installation	wizard	would	show	your	license	file	content	like	this:

LICENSE

79

Synology	DSM	Integration
FHS
Desktop	Application
Privilege
Resource

Synology	DSM	Integration

80

Package	Filesystem	Hierarchy	Standard
After	the	package	installed,	there	will	be	some	directories	for	package	to	put	their	data.	There	will	be	different	directories	linked	for
packages	who	installed	on	volume	partition	/	system	partition.

/var/packages/[package_name]

├──	etc					->	/volume[volume_number]/@appconf/[package_name]	(move	to	volume	since	7.0-41330,	and	old	path	still	works)

├──	var					->	/volume[volume_number]/@appdata/[package_name]

├──	tmp					->	/volume[volume_number]/@apptemp/[package_name]

├──	home				->	/volume[volume_number]/@apphome/[package_name]

└──	target		->	/volume[volume_number]/@appstore/[package_name]

/var/packages/[package_name]

├──	etc					->	/usr/syno/etc/packages/[package_name]

├──	var					->	/usr/local/packages/@appdata/[package_name]

├──	tmp					->	/usr/local/packages/@apptemp/[package_name]

├──	home				->	/usr/local/packages/@apphome/[package_name]

└──	target		->	/usr/local/packages/@appstore/[package_name]

Please	refer	to	install_type	in		INFO		for	more	information	about	installation	on	volume	/	system	partition.

Directory Purpose Mode Creation
Timing Remove	Timing Script	Variable

etc permanant	config	storage 0755 installed	/
upgraded none none

var	
(since	7.0-
40314)

permanant	data	storage 0755 installed	/
upgraded none 	SYNOPKG_PKGVAR	

tmp	
(since	7.0-
40356)

temporary	data	storage 0755 installed	/
upgraded

uninstalled	/
upgrading

	SYNOPKG_PKGTMP	

home	
(since	7.0-
40759)

private	storage 0700 installed	/
upgraded none 	SYNOPKG_PKGHOME	

target data	extracted	from
	package.tgz	

0755 installed	/
upgraded

uninstalled	/
upgrading

	SYNOPKG_PKGDEST	

Directory	Owner	Rules

When	defaults	run-as	is	package,	FHS	directories	are	set	to		[packageuser]:[packagegroup]	

When	defaults	run-as	is	root,	FHS	directories	are	set	to		root:[packagegroup]	

Please	refer	to	Privilege	section	for	more	information	about	defaults	run-as.

FHS

81

Desktop	Application
You	can	provide	a	App	Config	for	your	package	so	that	the	configured	application	will	show	on	the	menu	of	desktop.	It	is	possible	to
customize	icon,	application	privilege	and	target	url.

To	distinguish	different	role	of	users,	one	package	can	even	provide	more	than	one	application	such	as	admin	application	for
administrators	and	normal	application	for	normal	users.

In	addition,	any	application	can	bring	its	own	help	documents	into	desktop	by	providing	a	Help	Config.

Desktop	Application

82

Steps	to	setup	desktop	application

1.	 Create	a	directory	inside	package.tgz,	this	directory	will	be	used	to	store	desktop	application	configs.	We	name	it	as		ui		for
example	here.

2.	 Add		dsmuidir		key	to	your	INFO	or	INFO.sh	whose	value	is	the	relative	path	to	the	directory	you	just	created	on	previous	step.

	dsmuidir="ui"

	dsmuidir="MyApp1:appui1	MyApp2:appui2"

If	you	have	multiple	applications,	the	second	form	should	be	applied.	In	the	example	above,		MyApp1		represents	an	identifier
and		appui1		represents	a	relative	path.

Once	the	package	is	installed,	DSM	will	create	corresponding	soft	link	at		/usr/syno/synoman/webman/3rdpaty/[identifier]/	
linking	to	the	path	where	your	relative	path	is.	When	the	identifier	is	not	presented	in	the	first	form,	DSM	will	use	package
name	as	identifier	by	default.

3.	 Create	your	own	App	Config	and	Help	Config	under	the	directory	specified	by		dsmuidir		if	necessary.

4.	 Add		dsmappname		key	to	your	INFO	or	INFO.sh	whose	value	is	the	unique	application	name	inside	App	Config.	This	application
will	be	the	target	application	when	open	button	of	package	is	clicked	in	package	center.

dsmappname="com.company.App1"

Desktop	Application

83

Desktop	Application

84

Application	Config
To	integrate	desktop	applications	into	DSM,	you	have	to	provide	a		config		file	in	JSON	format	under	the	directory	specified	by
	dsmuidir		in		INFO	.

{

				".url":	{

								"com.company.App1":	{

												"type":	"url",

												"icon":	"images/app_{0}.png",

												"title":	"Test	App1",

												"desc":	"Description",

												"url":	"http://www.yahoo.com",

												"allUsers":	true,

												"preloadTexts":	[

																"app_tree:index_title",

																"app_tree:node_1"

]

								},

								"com.company.App2":	{

												"type":	"url",

												"icon":	"images/app2_{0}.png",

												"title":	"Test	App2",

												"desc":	"Description	2",

												"url":	"http://www.synology.com",

												"allUsers":	true

								}

				}

}

Property Required Description

com.company.App1
com.company.App2 O In	“.url”,	each	object	should	have	a	unique	property	name.

type O

When	you	click	the	menu	item,	the	address	you	use	to	connect	to	the	DSM	management
UI	will	be	shown	in	the	right	frame	of	the	management	UI.	However,	you	can	customize
the	address	as	you	wish.	
The	“type”	value	can	be	"url".	"url"	means	when	you	click	the	application	icon,	the
URL	will	be	opened	in	a	pop-up	window.	
You	can	follow	the	descriptions	below	to	set	up	your	customized	URL.	

icon O

“icon”	indicates	the	icon	for	the	application.	It	is	a	template	string.	The	“{0}”	can	be
replaced	by	“16”,	“24”,	“32”,	“48”,	“64”,	“72”,	“256”	depending	on	the	resolution	of
the	icon.	
The	icon	must	be	saved	under	/usr/syno/synoman/webman/3rdparty/xxx/	where	xxx	is
the	directory	name	of	your	package.	
For	example,	if	you	create	a	directory	named	"images"	and	put	the	icon	image	file
“icon.png”	in	it,	the	full	path	for	the	icon	would	be:	
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_16.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_24.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_32.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_48.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_64.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_72.png		
	/usr/syno/synoman/webman/3rdparty/xxx/images/icon_256.png		
The	icon	value	should	also	be	set	as	"images/icon_{0}.png"

title O “title”	represents	the	application	name	that	will	be	displayed	in	the	main	menu.

desc X “desc”	displays	more	details	about	this	application	upon	mouse-over.

url O
The	following	is	an	example	of	value	setting	for	your	URL	of	the	application:	
“url”:	http://www.synology.com/	
“url”:	“3rdparty/xxx/index.html”

Application	Config

85

http://www.synology.com/

allUsers X
in	with	an	admin	account.	If	you	would	like	to	have	all	users	see	the	menu	items,	please
set	the	key	value	as	below:	
	"allUsers":	true		
The	default	setting	is	that	only	the	admin	can	find	the	application.

preloadTexts X
The	specified	i18n	section:key	strings	will	be	loaded	even	when	application	ui	is	not
opened.	This	is	necessary	when	corresponding	strings	are	used	to	send	desktop
notifications.

Text	fields	support	i18n	value.

Application	Config

86

Application	Help
To	integrate	help	documents	into	DSM	Help,	please	follow	these	steps:

1>	Provide	a		helptoc.conf		describing	your	help	document	structure	and	put	it	under	the	directory	specified	by		dsmuidir		in		INFO	.

{

				"app":	"SYNO.App.TestAppInstance",

				"title":	"app_tree:index_title",

				"content":	"testapp_index.html",

				"toc":	[

								{

												"title":	"app_tree:node_1",

												"content":	"testapp_node1.html",

												"nodes":	[

																{

																				"title":	"app_tree:node_1_child",

																				"content":	"testapp_node1_child.html"

																}

]

								},	{

												"title":	"app_tree:node_2",

												"content":	"testapp_node2.html"

								}

]

}

Details	of		helptoc.conf		are	stated	below:

Property Description

app the	application	instance.

title the	text	being	displayed.

content the	path	to	your	help	document.

toc the	child	nodes	of	root.	
(use	empty	array	if	your	application	doesn't	have	one)

nodes the	child	nodes	of	toc	node.

Text	fields	support	i18n	value.

2>	Create	directories	and	files	according	to	your		helptoc.conf	.

ui	(specified	by	dsmuidir	in	INFO)

├──	helptoc.conf

├──	help

│			├──	enu

│			│				└──	testapp_index.html

│			└──	cht

│								└──	testapp_index.html

└──	texts

				├──	enu

				│				└──	strings

				└──	cht

									└──	strings

3>	Write	each	help	document	in	the	following		HTML		format	so	that	the	UI	style	can	be	consistent	with	others.

<!DOCTYPE	html>

<html	class="img-no-display">

				<head>

Application	Help

87

								<meta	charset="UTF-8"	/>

								<meta	http-equiv="X-UA-Compatible"	content="IE=edge,chrome=1">

								<link	href="../../../../help/help.css"	rel="stylesheet"	type="text/css">

								<link	href="../../../../help/scrollbar/flexcroll.css"	rel="stylesheet"	type="text/css">

								<script	type="text/javascript"	src="../../../../help/scrollbar/flexcroll.js"></script>

								<script	type="text/javascript"	src="../../../../help/scrollbar/initFlexcroll.js"></script>

				</head>

				<body>

								This	is	my	help	document	content

				</body>

</html>

Application	Help

88

Application	Internationalization
The	desktop	application	can	have	i18n	text	referenced	by	config,	help,	etc.

ui	(specified	by	dsmuidir	in	INFO)

└──	texts

			├──	enu

			│				└──	strings

			└──	cht

								└──	strings

You	have	to	create	directories	according	to	supported	languages	then	create	a	file	named		strings		inside	each	language	directory.

[dsmuidir]/texts/enu/strings

		[app_tree]

		index_title="This	is	a	title"

		node_1="This	is	node1"

		[app_tab]

		tab1="This	is	tab1"

		tab2="This	is	tab2"

[dsmuidir]/texts/cht/strings

		[app_tree]

		index_title=""

		node_1="1"

		[app_tab]

		tab1="1"

		tab2="2"

When	you	want	to	use	these	texts,	just	reference	them	in		section:key		format	(one	value	can	only	be	one	i18n	string)

"title":	"app_tree:node_1"

I18N	strings	are	loaded	only	when	application	opened	on	desktop	after	DSM	7.0.	If	the	strings	are	used	as	desktop	notifications,
those	strings	should	be	specified	in		preloadTexts		of	application	config.

Application	I18N

89

Application	Authentication
After	integrating	your	application	into	Synology	DSM,	you	may	want	to	perform	an	authentication	check	to	ensure	only	logged-in	users
can	access	the	page.

You	can	run	/usr/syno/synoman/webman/modules/authenticate.cgi	to	check	the	user	login	status.	However	the	authenticate.cgi	must	be
run	with	some	environment	variables	(HTTP_COOKIE,	REMOTE_ADDR,	SERVER_ADDR,	etc.).	So	execute	the	authenticate.cgi
directly	from	the	package	custom	CGI	is	recommended	since	the	environment	variables	needed	are	set	automatically.

Sample	Code	test.cgi

The	authenticate.cgi	will	output	the	user	name	if	the	user	has	logged	in.	There	will	be	no	output	if	the	user	has	not	been	authenticated.

Here	is	the	sample	code	for	3rd	party	CGI	(Note.	compile	this	with	-std=c99)

#define	_GNU_SOURCE

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

#include	<strings.h>

/**

	*	Check	whether	user	is	logged	in.

	*

	*	If	user	has	logged	in,	put	the	username	into	"user".

	*

	*	@param	user				The	buffer	for	get	username

	*	@param	bufsize	The	buffer	size	of	user

	*

	*	@return	0:	User	not	logged	in	or	error

	*									1:	User	logged	in.	The	user	name	is	written	to	given	"user"

	*/

int	IsUserLogin(char	*user,	int	bufsize)

{

				FILE	*fp	=	NULL;

				char	buf[1024];

				int	login	=	0;

				bzero(user,	bufsize);

				fp	=	popen("/usr/syno/synoman/webman/modules/authenticate.cgi",	"r");

				if	(!fp)	{

								return	0;

				}

				bzero(buf,	sizeof(buf));

				fread(buf,	1024,	1,	fp);

				if	(strlen(buf)	>	0)	{

								snprintf(user,	bufsize,	"%s",	buf);

								login	=	1;

				}

				pclose(fp);

				return	login;

}

int	main(int	argc,	char	**argv)

{

				char	user[256];

				printf("Content-Type:	text/html\r\n\r\n");

				if	(IsUserLogin(user,	sizeof(user))	==	1)	{

								printf("User	is	authenticated.	Name:	%s\n",	user);

Application	Authentication

90

				}	else	{

								printf("User	is	not	authenticated.\n");

				}

				return	0;

}

How	to	run	the	test.cgi
DSM	requires	cookie	to	validate	the	DSM	login	session.

Login

Access	the	following	cgi	with	your	credential	information,	you	will	receive	the	session	information	in	your	cookie.

https://your-ip:5001/webapi/auth.cgi?api=SYNO.API.Auth&version=3&method=login&account=admin&passwd=your_admin_password&format=

cookie

Note.	If	you're	using	the	insecure	http	protocol,	please	alter	the	protocol	and	change	the	port	number	to	5000.

Access	test.cgi	with	cookie

Access	test.cgi	with	cookie	information.

https://your-ip:5001/path/to/test.cgi

If	you	are	having	trouble	accessing	your	test.cgi,	please	try	to	access	any	other	webapi	with	your	cookie.	This	would	help	you	to
clearify	if	your	cookie	information	is	valid	or	not.

https://your-ip:5001/webapi/entry.cgi?api=SYNO.Core.System&version=3&method=info

Logout

By	accessing	the	following	webapi,	you	will	be	logged	out.

https://your-ip:5001/webapi/auth.cgi?api=SYNO.API.Auth&version=1&method=logout

Application	Authentication

91

Privilege	Config

To	make	your	package	work,	there	must	exist		conf/privilege		inside	your	package.	It	controls	security	related	behaviours	in	entire
package	lifecycle.

{

		"defaults":{

				"run-as":	"package"

		},

		"username":	"myusername",

		"groupname":	"mygroupname",

		"tool":	[{

				"relpath":	"bin/mytool",

				"user":	"package",

				"group":	"package",

				"permission":	"0700"

		}]

}

defaults	(required)

Controls	default	settings	for	entire	privilege	file.	It	can	only	be	set	as	value	below.

run-as behaviour	on	file behaviour	on	script

	package	 	chown	-hR	"${package}:${package}"	 set	resuid	as	[username]

run-as behaviour	on	file behaviour	on	script

	root	 	chown	-hR	"root:root"	 set	resuid	as	root

username	/	groupname	(optional)	(since	6.0-5940)

Specify	which	name	will	be	the	user	name	and	group	name.	If	not	specified,	the	package	name	will	be	the	default	value.

ctrl-script	(optional)

Control	the	identity	to	run	scripts.

"ctrl-script":	[{

		"action":	"start",

		"run-as":	"package"

}]

Member Since Description

	action	
6.0-
5891

one	of		preinst	,		postinst	,		preuninst	,		postuninst	,		preupgrade	,		postupgrade	,		start	,		stop	,
	status	,		prestart	,		prestop	

	run-as	
6.0-
5891 see	the	description	above

executable	(optional)

Specify	the	identity	to	chown	on	installed	for	specific	file.

"executable":	[{

		"relpath":	"bin/mybin",

		"run-as":	"package"

Privilege	Config

92

}]

Member Since Description

	relpath	 6.0-5891 relative	path	under		/var/packages/[package_name]/target	

	run-as	 6.0-5891 see	the	description	above

tool	(optional)

Specify	the	identity	to	chown	and	chmod	on	installed	for	specific	file.

If	you	want,	you	can	even	set	file	capabilities.

"tool":	[{

		"relpath":	"bin/mytool",

		"user":	"package",

		"group":	"package",

		"permission":	"0700"

}]

Member Since Description

	relpath	 6.0-5891 String,	the	file's	relative	path	under	/var/packages/${package}/target/.

	user	 6.0-5891 String,	file's	owner	user,	must	be	"package".

	group	 6.0-5891 String,	file's	owner	group,	must	be	"package"

	permission	 6.0-5891 4	digit	number	to	set	file	permission,	for	example:	4750

"tool":	[{

		"relpath":	"bin/mytool",

		"user":	"package",

		"group":	"package",

		"capabilities":	"cap_chown,cap_net_raw",

		"permission":	"0700"

}]

Member Since Description

	capabilities	 7.0-40656 capabilities	string	without	any		+-=eip		symbol.	the	value	can	be	viewed	HERE

Package	User	/	Group	Visibility	On	UI

Package	users	and	groups	will	not	appear	on	most	UI	settings,	but	there	are	some	exceptions:

[x]	Application	privilege	permission	viewer
[x]	FTP	chroot	user	selector
[x]	File	Station

[x]	Change	owner
[x]	Shared	Links	Manager	->	Enable	secure	sharing

[o]	Control	Panel	>	Shared	Folder	>	Edit	>	Permission	>	System	internal	user
[o]	ACL	editor

Privilege	Config

93

http://man7.org/linux/man-pages/man7/capabilities.7.html

Resource	Config
It	defines	the	system	resource	that	is	neccesary	for	this	package	to	work.

{

		"<resource-id>":	{

				<specification>

		}

}

For	example,	you	can	apply	/usr/local	linker:

{

		"usr-local-linker":	{

				"lib":	["lib/foo"],

				"bin":	["bin/foo"],

				"etc":	["etc/foo"],

		}

}

From	this	example,	the		usr-local-linker		represents	the	resource	id	and	its	value	represents	the	file	to	be	linked.

Resource	Config

94

Resource	Timing
Every	worker	acquires	resources	at	certain	timings	and	holds	it	during	an	interval.	For	example,	/usr/local	linker	holds	the	resource
during	the	interval		FROM_ENABLE_TO_DISABLE	,	which	means	it	acquires	resource	at		WHEN_ENABLE		and	releases	it	at		WHEN_DISABLE	.	The
timings	are	listed	and	explained	below:

timing descrioption when	Failure

	WHEN_PREINST	 before	preinst abort	installation,	rollback,	show	alert	message	on
UI

	WHEN_POSTINST	 before	postinst finish	installation,	show	alert	message	on	UI

	WHEN_ENABLE	
before		WHEN_STARTUP	,	won't	process	during
bootup abort	startup,	rollback,	show	alert	message	on	UI

	WHEN_STARTUP	 before	start abort	startup,	rollback,	show	alert	message	on	UI

Resource	Timing

95

	WHEN_PREUNINST	 after	preuninst finish	uninstallation,	show	alert	message	on	UI

	WHEN_POSTUNINST	 before	postuninst finish	uninstallation,	show	alert	message	on	UI

	WHEN_DISABLE	
after		WHEN_HALT	,	won't	process	during
shutdown ignore

	WHEN_HALT	 after	stop ignore

NOTE	To	let	the	package	itself	decide	whether	uninstallation	should	continue	or	not,		WHEN_PREUNINST		is	processed	after	the		preuninst	
script.

Resource	Timing

96

Resource	Update
Some	workers	support	update	operation	outside	of	worker	timings.	/usr/syno/sbin/synopkgheler	should	be	used	to	accomplish	this	job.
Below	are	the	steps	to	update	the	resource:

1.	 Update	the	file	at		/var/packages/[package_name]/conf/resource	
2.	 Execute	the	command		/usr/syno/sbin/synopkghelper	update	[package_name]	[resource_id]		to	trigger	updating	procedure.

For	example,	suppose	a	package	allows	the	user	to	edit	its	listening	port	and	needs	to	update	correponding	network	settings:

1.	 User	submits	new	port	to	the	application
2.	 The	application	updates	the	file	at		/var/packages/[package_name]/conf/resource	
3.	 The	application	executes	the	command		/usr/syno/sbin/synopkghelper	update	${package}	port-config	,	then	the		port-config	

worker	will	read	the	config	and	reload	network	settings.

NOTE	Not	all	resource	support	update	operation,	please	refer	to	the	Updatable	section	of	each	resource.

Resource	Update

97

Available	Workers
As	mentioned	in	the	section	Resource,	a	worker	is	needed	for	resource	management.

Given	a	Resource	Config	file,	the	resource	worker	will	acquire	/	release	the	resource	at	certain	time.	This	section	describes	the	available
resource	workers	on	the	DSM.

Resource	List

98

/usr/local	linker

Description

Package's	executables	and	library	files	should	be	installed	to	/usr/local.	This	worker	link	/	unlink	files	to	/usr/local/{bin,lib,etc}	during
package	start	/	stop.

	Acquire()	:	Create	symbolic	links	under	/usr/local/{bin,lib,etc}/	that	points	to	files	in	/var/packages/${package}/target/.
Files	not	found	under	/var/packages/${package}/target/	will	be	ignored.
If	the	target	file	already	exists	in	/usr/local/{bin,lib,etc},	it	will	be		unlink()		first.
Failure	on	any	file	link	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	links	under	/usr/local/{bin,lib,etc}/.
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

DSM

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"usr-local-linker":	{

		"bin"	["<relpath>",	...],

		"lib"	["<relpath>",	...],

		"etc"	["<relpath>",	...]

}

Member Since Description

	bin	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/bin/.

	lib	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/lib/.

	etc	 6.0-5941 String	array,	list	of	files	to	be	linked	under	/usr/local/etc/.

	relpath	 6.0-5941 String,	target	file's	relative	path	under	/var/packages/${package}/target/.

Example

"usr-local-linker":	{

		"bin":	["usr/bin/a2p",	"usr/bin/perl"],

		"lib":	["lib/perl5"]

}

Resource	List

99

The	above	specifications	generates	the	following	symbolic	links	for	the	Perl	package:

root@DS	$	ls	-l	/usr/local/{bin,lib,etc}

/usr/local/bin/:

total	0

lrwxrwxrwx	1	root	root			30	Aug	13	06:32	a2p	->	/var/packages/Perl/target/usr/bin/a2p

lrwxrwxrwx	1	root	root			31	Aug	13	06:32	perl	->	/var/packages/Perl/target/usr/bin/perl

/usr/local/lib/:

total	0

lrwxrwxrwx	1	root	root			28	Aug	13	06:32	perl5	->	/var/packages/Perl/target/lib/perl5

/usr/local/etc/:

total	0

Resource	List

100

Apache	2.2	Config

Description

Packages	can	carry	sites-enabled/*.conf	files	for	Apache	HTTP	Server	2.2.	This	worker	installs	/	uninstalls	these	config	files	during
package	start	/	stop.

	Acquire()	:	Copy	the	conf	files	to	/usr/local/etc/httpd/sites-enabled/.	Then	reload	Apache	2.2.
The	files	should	have	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be		unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

WebStation

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"apache22":	{

				"sites-enabled":	[{

								"relpath":	"<conf-relpath>",

				},	...]

}

Member Since Description

	sites-enabled	 WebStation-1.0-0049 Object	array,	list	of	conf	files	to	install.

	relpath	 WebStation-1.0-0049 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

{

				"apache22":	{

								"sites-enabled":	[{

												"relpath":	"synology_added/test_1.conf"

								},	{

												"relpath":	"synology_added/test_2.conf"

								},	{

												"relpath":	"synology_added/test_3.conf"

Resource	List

101

								}]

				}

}

Resource	List

102

Data	Share

Description

This	worker	creates	shared	folder	and	set	its	permission	during	package	startup.	The	share	name	can	be	hard-coded	in	the	specification.
The	shared	folder	will	not	be	removed	after	package	uninstallation,	since	it	might	delete	the	user’s	personal	data	as	well.

	Acquire()	:	Create	shared	folder	and	set	its	permission.
If	the	shared	folder	already	exists,	skip	share	creation	and	set	the	permission.

	Release()	:	Does	nothing.

Provider

DSM

Timing
	FROM_ENABLE_TO_POSTUNINST	

Environment	Variables

None

Updatable

No

Syntax

"data-share":	{

		"shares":	[{

				"name":	"<share-name>",

				"permission":	{

						"ro":	["<user-name>",	...],

						"rw":	["<user-name>",	...]

				},

				"once":	"<once>"

		},	...]

}

Member Since Description

	shares	 6.0-5914 Object	array,	array	of	shares	to	create

	name	 6.0-5914 String,	name	of	the	share

	permission	 6.0-5914 Json	object,	permission	of	the	share.	(optional)

	ro	 6.0-5914 String	arrayusers	to	be	assigned	with	read-only	permission.

	rw	 6.0-5914 String	arrayusers	to	be	assigned	with	read	/	write	permission.

	once	 6.0-5914 Boolean,	only	try	to	create	share	on	package's	first	start.	(optional,	default	=		false)

Example

The	following	specification	creates	a	share	music,	and	gives	the	user	AudioStation	read-only	permission.	Since		once		defaults	to		false	,
the	above	procedure	is	ran	every	time	the	package	starts.

Resource	List

103

"data-share":	{

		"shares":	[{

				"name":	"music",

				"permission":	{

						"ro":	["AudioStation"]

				}

		}]

}

since	7.0-41201,	package	center	will	create	a	symlink	under		/var/packages/[package_id]/shares/		named	by	share	folder	pointing
to	share	folder	path.

Resource	List

104

Docker	(since	DSM7.0)

Description

Docker	worker	is	made	for	docker	package	to	help	them	easily	deploy	their	containers	without	calling	docker	command	by	themselves.
Docker	worker	use	docker-compose	framework,	it	will	generate	docker-compose.yaml	according	to	user's	docker	worker	configuration
and	create	containers	during	installation.

When	in	install/remove	package	stage,	worker	will	create/remove	docker-compose.yaml,	volume	on	host	directory,	images	and
containers.

When	in	start/stop	package	stage,	worker	will	start/stop	containers	by	calling	docker-compose	start/stop.

FROM_POSTINST_TO_PREUNINST

	Acquire()	:	Create	docker-compose.yaml	and	prepare	host	volume	for	container	to	mount.	Worker	will	also	create	containers	in
this	stage.
	Release()	:	Remove	docker-compose.yaml,	host	volume,	containers	and	images.	Note	that	worker	will	not	remove	host	volume
during	upgrade	docker	package.

FROM_STARTUP_TO_HALT

	Acquire()	:	Start	containers.
	Release()	:	Stop	containers.

Provider

Docker

Timing

	FROM_POSTINST_TO_PREUNINST			FROM_STARTUP_TO_HALT	

Environment	Variables

None

Updatable

No

Syntax

"docker":{

				"services":	[{

								service	setting	1

				},{

								service	setting	2

				}...],

}

Key Since Type Required Nullable Default
Value Description

	services	
18.09.0-
1018 Array true false N/A List	of	docker	services	information	to

create	docker-compose.yaml

Resource	List

105

services

	services		specify	service	configurations	such	as	service	name,	image	name	and	tag,	container	name,	volume	...	etc.	Docker	worker	will
create	docker-compose.yaml	according	to	given	service	configurations.

Key Since type Required Nullable Default
Value Description

service 18.09.0-
1018 string true false N/A Service	name.

image 18.09.0-
1018 string true false N/A Image	name.

tag 18.09.0-
1018 string true false N/A Image	tag.

build 18.09.0-
1018 string true false N/A

Relative	path	to	Dockerfile	directory
that	package	carries.	More	detail	will
be	elaborated	in		build		section.

container_name 18.09.0-
1018 string false true N/A Container	name.

shares 18.09.0-
1018

array
of
objects

false true N/A

Container	mount	volume
specifications	especially	for
persistant	data	perpose.	More	detail
will	be	elaborated	in		volumes	
section.

volumes 18.09.0-
1018

array
of
objects

false true N/A

Container	mount	volume
specifications	especially	for	mounting
config	file	perpose.	More	detail	will
be	elaborated	in		volumes		section.

ports 18.09.0-
1018

array
of
objects

false true N/A Container	ports	specification.

environment 18.09.0-
1018

array
of
objects

false false N/A Container	environment	variables
specification.

depends 18.09.0-
1018

array
of
objects

false false N/A Specify	dependent	service.

build

	build		attribute	is	for	building	image	with	given	Dockerfile	path.	The	path	will	be	relative	path	based	on	package	target	path
(/var/packages/PKG_NAME/target/).

Syntax:

{

		"build":	"[Dockerfile	directory]"

}

Transform	to	docker-compose.yaml:

build:	/var/packages/PKG_NAME/target/[Dockerfile	directory]

Example:	Let	odoo_docker	directory	containers	Dockerfile	and	is	under	"/var/packages/Odoo/target/"

{

		"build":	"odoo_docker"

}

Resource	List

106

Transform	to	docker-compose.yaml:

build:	/var/packages/Odoo/target/odoo_docker

volumes

Volumes	contains	two	categories	-		shares		and		volumes		which	are	for	different	purposes.	Although	those	two	categories	will	all	be
transform	into	docker-compose's	"volumes"	section,	we	seperate	them	for	different	usage.	That	is,		shares		attribute	is	for	persistant
data	volumes	while		volumes		is	for	configuration	files	or	any	other	configurations	relative	files.

shares:	The		shares		attribute	is	for	containers	to	persistant	data.	User	only	need	to	fill	in	the	a	directory	name	in		shares		and	the
worker	will	first	create	directory	under	docker	share	directory	for	user	and,	then,	genterate		SOURCE:TARGET		pair	under		volumes		section
in	docker-compose.yaml.

Syntax:

{

		"shares":	[{

						"host_dir":	"[host	directory]",

						"mount_point":	"[mount	point]"

		},	...	{

						...

		}]

}

Transform	to	docker-compose.yaml:

volumes:

		-	/volumeX/docker/PKG_NAME/[host	directory]:[mount	point]

Example:

{

		"shares":	[{

						"host_dir":	"odoo_data",

						"mount_point":	"/var/lib/odoo"

		}]

}

Transform	to	docker-compose.yaml:

volumes:

		-	/volume1/docker/Odoo/odoo_data:/var/lib/odoo

volumes:	The		volumes		attribute	is	similar	to		shares		attribute	but	is	design	for	configuration	files	or	directory	that	user	would	like	to
mount	into	contianer.	User	can	specify	relative	path	of	host	configuration	file	or	directory	based	on	package	target	path
(/var/packages/PKG_NAME/target/)	and	the	worker	will	genterate		SOURCE:TARGET		pair	under		volumes		section	in	docker-
compose.yaml.

Syntax:

{

		"volumes":	[{

						"host_dir":	"[host	config	or	directory]",

						"mount_point":	"[mount	point]"

		},	...	{

						...

		}]

}

Resource	List

107

Transform	to	docker-compose.yaml:

volumes:

		-	/var/packages/PKG_NAME/target/[host	config	or	directory]:[mount	point]

Example:

{

		"volumes":	[{

						"host_dir":	"odoo_docker/config",

						"mount_point":	"/etc/odoo"

		}]

}

Transform	to	docker-compose.yaml:

volumes:

		-	/var/packages/Odoo/target/odoo_docker:/etc/odoo

ports

	ports		attribute	is	for	creating	ports	binding	for	container.

Restriction:	Host	port	needs	to	be	at	between	1025	to	65535.

Syntax:

{

		"ports":	[{

						"host_port":	"[port	on	host]",

						"container_port":	"[port	in	container]",

						"protocol":	"[tcp	or	udp]"

		},	...	{

						...

		}]

}

Transform	to	docker-compose.yaml:

ports:

		-	"[port	on	host]:[port	in	container]/[tcp	or	udp]"

Example:

{

		"ports":	[{

						"host_port":	"30076",

						"container_port":	"80",

						"protocol":	"tcp"

		},	{

						"host_port":	"30078",

						"container_port":	"443",

						"protocol":	"tcp"

	}]

}

Transform	to	docker-compose.yaml:

ports:

		-	"30076:80/tcp"

		-	"30078:443/tcp"

Resource	List

108

environment

	environment		attribute	is	for	creating	environment	variables	and	values	for	containers.

Syntax:

{

		"environment":	[{

						"env_var":	"[variable	name]",

						"env_value":	"[value]"

		},	...	{

						...

		}]

}

Transform	to	docker-compose.yaml:

environment:

		-	"[variable	name]:[value]"

Example:

{

		"environment":	[{

						"env_var":	"HOST",

						"env_value":	"odoo_db"

		},	{

						"env_var":	"USER",

						"env_value":	"odoo"

		},	{

						"env_var":	"PASSWORD",

						"env_value":	"odoo"

		}]

}

Transform	to	docker-compose.yaml:

environment:

		-	HOST=odoo_db

		-	USER=odoo

		-	PASSWORD=odoo

depends

	depends		attribute	is	for	specifying	dependent	services,	in	the	same	way	as	docker-comopose.

Syntax:

{

		"depends":	[{

						"dep_service":	"[service	name]"

		},	...	{

						...

		}]

}

Transform	to	docker-compose.yaml:

depends_on:

		-	[service	name]

Example:

{

Resource	List

109

		"depends":	[{

						"dep_service":	"odoo_db"

		}]

}

Transform	to	docker-compose.yaml:

depends_on:

		-	odoo_db

docker-compose	generation	example

conf/resource:

{

				"docker":	{

								"services":	[{

												"service":	"odoo",

												"build":	"odoo_docker",

												"image":	"odoo",

												"container_name":	"Odoo",

												"tag":	"12.0",

												"environment":	[{

																"env_var":	"HOST",

																"env_value":	"odoo_db"

												},	{

																"env_var":	"USER",

																"env_value":	"odoo"

												},	{

																"env_var":	"PASSWORD",

																"env_value":	"odoo"

												}],

												"shares":	[{

																"host_dir":	"odoo_data",

																"mount_point":	"/var/lib/odoo"

												}],

												"ports":	[{

																"host_port":	"{{wizard_http_port}}",

																"container_port":	"8069",

																"protocol":	"tcp"

												}],

												"depends":	[{

																"dep_service":	"odoo_db"

												}]

								},	{

												"service":	"odoo_db",

												"image":	"postgres",

												"tag":	"10",

												"container_name":	"Odoo_db",

												"shares":	[{

																"host_dir":	"db",

																"mount_point":	"/var/lib/postgresql/data/pgdata"

												}],

												"environment":	[{

																"env_var":	"POSTGRES_DB",

																"env_value":	"postgres"

												},	{

																"env_var":	"POSTGRES_PASSWORD",

																"env_value":	"odoo"

												},	{

																"env_var":	"POSTGRES_USER",

																"env_value":	"odoo"

												},	{

																"env_var":	"PGDATA",

																"env_value":	"/var/lib/postgresql/data/pgdata"

												}]

								}]

				}

Resource	List

110

}

Transform	to	docker-compose.yaml:

version:	'3'

services:

		odoo:

				build:	/var/packages/Docker_Odoo_SynoCommunity/target/odoo_docker

				image:	odoo:12.0

				container_name:	Odoo

				environment:

						-	HOST=odoo_db

						-	USER=odoo

						-	PASSWORD=odoo

				volumes:

						-	/volume1/docker/Docker_Odoo_SynoCommunity//odoo_data:/var/lib/odoo

				ports:

						-	"30076:8069/tcp"

				depends_on:

						-	odoo_db

				networks:

						-	Docker_Odoo_SynoCommunity

		odoo_db:

				image:	postgres:10

				container_name:	Odoo_db

				environment:

						-	POSTGRES_DB=postgres

						-	POSTGRES_PASSWORD=odoo

						-	POSTGRES_USER=odoo

						-	PGDATA=/var/lib/postgresql/data/pgdata

				volumes:

						-	/volume1/docker/Docker_Odoo_SynoCommunity//db:/var/lib/postgresql/data/pgdata

				networks:

						-	Docker_Odoo_SynoCommunity

networks:

		Docker_Odoo_SynoCommunity:

				driver:	bridge

Resource	List

111

Docker	Project	Worker

Description

Docker	Project	Woker	is	provided	by	ContainerManager	power	by	docker-compose,	a	tool	for	running	multi-container	applications	on
Docker	defined	using	the	Compose	file	format.

It's	more	flexible	to	Docker	Worker	which	only	provides	limited	configuration,	and	available	to	define	multiple	projects.

When	the	package	install/uninstall	stage,	the	worker	will	use	the	compose	file	inside	to	create	(or	update)	the	project	according	to	the
provided	path,	and	build	it.	And	start	or	stop	projects	on	package	start	or	stop	stage.

Provider

ContainerManager>=1432	(since	DSM7.2.1)

Timing

	FROM_POSTINST_TO_PREUNINST	

	Acquire()	:	According	to	the	configuration	provided,	create	(or	update)	and	build	these.
	Release()	:	Delete	projects

	FROM_STARTUP_TO_HALT	

	Acquire()	:	Start	projects.
	Release()	:	Stop	projects.

Environment	Variables

None

Updatable

No

Syntax

{

				//	...

				"docker-project":	{

								"preload-image":	"image.tar.gz",

								"projects":	[{

												"name":	"django-project",

												"path":	"django"

								},	{

												"name":	"wordpress-project",

												"path":	"wordpress-mysql"

								}]

				}

}

Key Type Required Description

preload-image String false Load	image	tar	ball

projects Array true List	of	docker	projects

Resource	List

112

projects

	projects		specify	name,	and	path	of	directory	of	compose.yml

Key Type Required Description

name 	string	 	true	 project	name

path 	string	 	true	 directory	of	compose.yaml,	relative	path	from	target

build_params 	object	 	false	 build	project	params,	describe	below.

	build_params	

these	attributes	are	helpful	when	performing	upgrades.

Key Type Default Description

force_pull 	boolean	 	false	 force	pull	image

force_recreate 	boolean	 	true	 force	recreate	contianers

build 	boolean	 	true	 force	build	Dockerfile

Example

Example:		compose.yml	:

services:

		db:

				#	We	use	a	mariadb	image	which	supports	both	amd64	&	arm64	architecture

				image:	mariadb:10.6.4-focal

				#	If	you	really	want	to	use	MySQL,	uncomment	the	following	line

				#image:	mysql:8.0.27

				command:	'--default-authentication-plugin=mysql_native_password'

				volumes:

						-	db_data:/var/lib/mysql

				restart:	always

				environment:

						-	MYSQL_ROOT_PASSWORD=somewordpress

						-	MYSQL_DATABASE=wordpress

						-	MYSQL_USER=wordpress

						-	MYSQL_PASSWORD=wordpress

				expose:

						-	3306

						-	33060

		wordpress:

				image:	wordpress:latest

				ports:

						-	9527:80

				restart:	always

				environment:

						-	WORDPRESS_DB_HOST=db

						-	WORDPRESS_DB_USER=wordpress

						-	WORDPRESS_DB_PASSWORD=wordpress

						-	WORDPRESS_DB_NAME=wordpress

volumes:

		db_data:

Example:	target	structor

target

├──	image.tar.gz

├──	django

│			├──	app

│			│			├──	Dockerfile

Resource	List

113

│			│			├──	example

│			│			│			├──	__init__.py

│			│			│			├──	settings.py

│			│			│			├──	urls.py

│			│			│			└──	wsgi.py

│			│			├──	manage.py

│			│			└──	requirements.txt

│			├──	compose.yaml

│			└──	README.md

└──	wordpress-mysql

				└──	compose.yml

Resource	List

114

Index	DB

Description

Index	/	unindex	package	help	and	app	index	during	package	start	/	stop.

For	detailed	description	on	package	app	index	and	help	index,	please	refer	to	Integegrate	Help	Document	into	DSM	Help.

	Acquire()	:	Index	package	help	and	app	content.
	Release()	:	Un-index	package	help	and	app	content.

Provider

DSM

Timing

	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<app	db	relpath>"

				},

				"help-index":	{

								"conf-relpath":	"<conf	relpath>",

								"db-relpath":	"<help	db	relpath>"

				}

}

Member Since Description

	app-index	 6.0-5924 Object,	app	index	info.

	help-index	 6.0-5924 Object,	help	index	info.

	conf-relpath	 6.0-5924 String,	config	file's	relative	path	under	/var/packages/${package}/target/.

	db-relpath	 6.0-5924 String,	db	folder's	relative	path	under	/var/packages/${package}/target/.

Example

"indexdb":	{

				"app-index"		:	{

								"conf-relpath":	"app/index.conf",

								"db-relpath":	"indexdb/appindexdb"

				},

				"help-index":	{

Resource	List

115

								"conf-relpath":	"app/helptoc.conf",

								"db-relpath":	"indexdb/helpindexdb"

				}

}

Resource	List

116

Maria	DB	10

Description

This	worker	register	on	the	following	timings:

	PREINST/PREUNINST		It	checks	the	resource	specification	from	user	/	wizard	to	avoid	failure	on	another	timing.

	POSTINST/POSTUNINST		It	performs	several	stages	when	package	intents	to	do	so:

	POSTINST		(install	&	upgrade)
migrate-db:	migrate	db	from	mariadb5	to	mariadb10,	usually	used	on	upgrade
create-db:	create	database
grant-user:	create	user
drop-db-inst:	drop	old	database,	usually	used	on	db	migration

	POSTUNINST		(uninstall)	(do	not	run	during	update)
drop-db-uninst:	drop	database
drop-user-uninst:	delete	user,	if	multiple	packages	share	same	user,	this	option	should	not	be	applied

If	worker	fails	on	any	stage,	worker	framework	would	rollback	the	performed	operations.

Provider

MariaDB10	package

Timing
	FROM_PREINST_TO_PREUNINST	

	FROM_POSTINST_TO_POSTUNINST	

Environment	Variables

None

Updatable

No

Syntax

"mariadb10-db":	{

				"admin-account-m10":	"<db	account>",

				"admin-pw-m10":	"<db	password>",

				"admin-account-m5":	"<m5	db	account>",

				"admin-pw-m5":	"<m5	db	password>",

				"migrate-db":	{

								"flag":	true	|	false,

								"m5-db-name":	"<db	name>",

								"m10-db-name":	"<db	name>",

								"db-collision":	"replace"	|	"error"

				},

				"create-db":	{

								"flag":	true	|	false,

								"db-name":	"<db	name>",

								"db-collision":	"replace"	|	"skip"	|	"error"

				},

				"grant-user":	{

								"flag":	true	|	false,

Resource	List

117

								"db-name":	"<db	name>",

								"user-name":	"<db	username>",

								"host":	"<db	host>",

								"user-pw":	"<db	password>"

				},

				"drop-db-inst":	{

								"flag":	true	|	false,

								"ver":	"m5"	|	"m10",

								"db-name":	"<db	name>"

				},

				"drop-db-uninst":	true	|	false,

				"drop-user-uninst":	true	|	false

}

All	fields	are	not	necessary,	but	if	you	enable	some	stages	then	you	have	to	fillup	some	fields.	(e.g.,	enable		create-db		stage,	then	you
have	to	provide		admin-account-m10		and		admin-pw-m10)

Member(L1) Member(L2) Since Description

	admin-account-

m10	
- 10.0.30-

0005 MariaDB10	account	id	which	has	full	access	permission(root)

	admin-pw-m10	 - 10.0.30-
0005

MariaDB10	account	password	which	has	full	access
permission(root)

	admin-account-m5	 - 10.0.30-
0005 MariaDB	account	id	which	has	full	access	permission(root)

	admin-pw-m5	 - 10.0.30-
0005 MariaDB	account	password	which	has	full	access	permission(root)

	migrate-db	 	flag	
10.0.30-
0005 whether	to	run	the	stage

	m5-db-name	
10.0.30-
0005 migration	source	db	name	of	MariaDB

	m10-db-name	
10.0.30-
0005 migration	destination	db	name	of	MariaDB10

	db-

collision	

10.0.30-
0005 	DB	Collision	Strategy		on	importdo	not	provide	 skip

	create-db	 	flag	
10.0.30-
0005 whether	to	run	the	stage

	db-name	
10.0.30-
0005 db	name	to	create	on	MariaDB10

	db-

collision	

10.0.30-
0005 	DB	Collision	Strategy		on	create	db

	grant-user	 	flag	
10.0.30-
0005 whether	to	run	the	stage

	db-name	
10.0.30-
0005 target	db	name	to	grant	for	user

	user-name	
10.0.30-
0005 create	and	grant	user	name

	host	
10.0.30-
0005 user	host	(default	=	localhost)

	user-pw	
10.0.30-
0005 user	password

	drop-db-inst	 	flag	
10.0.30-
0005 whether	to	run	the	stage

	ver	
10.0.30-
0005 target	mariadb	version	(m5	/	m10)

Resource	List

118

	db-name	
10.0.30-
0005 db	name	to	drop

	drop-db-uninst	 - 10.0.30-
0005 whether	to	run	the	stage

	drop-user-uninst	 - 10.0.30-
0005 whether	to	run	the	stage

	DB	Collision	Strategy	:	when	there	are	same	db	names	as	provided	from		migrate-db		&		create-db	,	it	can	solve	the	conflict	by	one	of
the	following	strategies:

1.	 replace	
drop	exist	db	and	replace	it	using	new	db

2.	 error	
do	not	do	anything	and	just	report	error,	which	might	cause	installation	failure

3.	 skip	
do	not	do	anything	and	continue	to	execute	as	usual

Example

"mariadb10-db":	{

				"admin-account-m10":	"root",

				"admin-pw-m10":	"password!@#123432",

				"admin-account-m5":	"",

				"admin-pw-m5":	"",

				"migrate-db":	{

								"flag":	false,

								"m5-db-name":	"",

								"m10-db-name":	"",

								"db-collision":	""

				},

				"create-db":	{

								"flag":	true,

								"db-name":	"myservice",

								"db-collision":	"error"

				},

				"grant-user":	{

								"flag":	true,

								"db-name":	"myservice",

								"user-name"	:	"myservice_dbuser",

								"host"	:	"localhost",

								"user-pw"				:	"password!@#123432asd123123"

				},

				"drop-db-inst":	{

								"flag":	false,

								"ver":	"",

								"db-name":	""

				},

				"drop-db-uninst":	true,

				"drop-user-uninst":	false

}

Resource	List

119

PHP	INI

Description

Packages	can	carry	custom	php.ini	and	fpm.conf	files.	This	worker	installs	/	uninstalls	these	config	files	during	package	start	/	stop.

	Acquire()	:	Copy	the	php.ini	and	fpm.conf	files	to	/usr/local/etc/php56/conf.d/	and	/usr/local/etc/php56/fpm.d/.	Then	reload
php56-fpm.

php.ini	/	fpm.conf	files	should	have	.ini	/	.conf	extension,	otherwise	it	will	be	ignored
Files	will	be	prefixed	by	${package}.
Existing	files	will	be		unlink()		first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	previously	created	links
Ignore	files	that	are	not	found.
Ignore		unlink()		failure.

Provider

PHP5.6

Timing
	FROM_ENABLE_TO_DISABLE	

Environment	Variables

None

Updatable

No

Syntax

"php":	{

					"php-ini":	[{

									"relpath":	"<ini-relpath>",

					},	...],

					"fpm-conf":	[{

									"relpath":	"<conf-relpath>",

					},	...]

	}

Member Since Description

	php-ini	 PHP5.6-5.6.17-0020 Object	array,	list	of	php.ini	files	to	install.

	fpm-conf	 PHP5.6-5.6.17-0020 Object	array,	list	of	fpm.conf	files	to	install.

	relpath	 PHP5.6-5.6.17-0020 Target	file's	relative	path	under	/var/packages/${package}/target/.

Example

{

				"php":	{

								"php-ini":	[{

Resource	List

120

												"relpath":	"synology_added/etc/php/conf.d/test_1.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_2.ini"

								},	{

												"relpath":	"synology_added/etc/php/conf.d/test_3.ini"

								}],

								"fpm-conf":	[{

												"relpath":	"synology_added/etc/php/fpm.d/test_1.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_2.conf"

								},	{

												"relpath":	"synology_added/etc/php/fpm.d/test_3.conf"

								}]

				}

}

Resource	List

121

Port	Config

Description

Install	/	uninstall	service	port	config	file	during	package	install	/	uninstall.

For	detailed	description	on	what	is	and	how	to	write	a	port	config	file,	please	refer	to	Install	Package	Related	Ports	Information	into
DSM.

	Acquire()	:	copy	the	.sc	file	to	/usr/local/etc/service.d/
If	the	destination	file	exists,	skip	file	copy.

	Release()	:	remove	the	.sc	file	and	reload	the	firewall	and	portforward.
	Update()	:	update	the	.sc	file	and	reload	firewall	and	portforward.

Timing

	FROM_POSTINST_TO_POSTUNINST	

Environment	Variables

None

Updatable

Yes,	please	refer	to	Config	Update	on	how	to	trigger	update.

Syntax

"port-config":	{

				"protocol-file":	<protocol_file>

	}

Member Since Description

	protocol_file	 6.0-5936 .sc	file's	relative	path	under	/var/package/{$package}/target/

Example

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Resource	List

122

Systemd	User	Unit

Description

The	package	framework	would	copy	files	at		conf/systemd/pkguser-[customname]		to		home/.config/systemd/user/		on	acquired	and
remove	them	on	released.

note	that	user	unit	cannot	be	related	with	normal	systemd	unit.	If	you	need	your	package	to	be	related	with	system	service,
please	refer	to	start_dep_services

The	package	should	use		synosystemctl	start		and		synosystemctl	stop		to	control	user	units	inside	scripts.

Extra

If	you	want	to	have	systemd	unit	inside	the	system,	you	may	just	put	your	units	at		conf/systemd/pkg-[customname]		without	the	need
to	use	this		systemd-user-unit		worker.

The	package	framework	would	copy	systemd	units	to		/usr/local/lib/systemd/system		on	acquired	and	remove	them	on	released.

Provider

DSM

Since

7.0-40761

Timing

	FROM_POSTINST_TO_POSTUNINST	

Syntax

"systemd-user-unit":	{}

Resource	List

123

https://www.freedesktop.org/software/systemd/man/systemd.unit.html

System	Nofitication

Description

merge	/	unmerge	package	notification	strings	on	package	start	/	stop

	Acquire()	:	Merge	package	notification	strings	then	rebuild	string	index
	Release()	:	Unmerge	package	notification	strings	then	rebuild	string	index

Provider

DSM

Timing
	FROM_STARTUP_TO_HALT	

Environment	Variables

None

Updatable

No

Syntax

"sysnotify":	{

		"texts_dir":	"<related_path_from_target_to_your_app_config_texts_dir>",

		"app_privileges":	[

				{

						"app_id":	"<app	id	in	app	config>",

						"categories":	["<notification	category	in	your	notification	string>"]

				}

]

}

Member Since Description

	texts_dir	 6.0.1 the	relative	path	of	text	dir

	app_privileges	 7.0-40343 relationship	between	category	and	app	id

	app_id	 7.0-40343 app	id

	categories	 7.0-40343 category

Examples

Example-1:	apply	the	specified	app	privilege	config	to	all	categories	of	notifications

"sysnotify":	{

		"texts_dir":	"ui/texts",

		"app_privileges":	[{

				"app_id":	"com.company.App1"

		}]

}

Resource	List

124

Example-2:	apply	the	specified	app	privilege	config	to	some	categories	of	notifications

"sysnotify":	{

		"texts_dir":	"ui/texts",

		"app_privileges":	[{

				"app_id":	"com.company.App1",

				"categories":	["Admin	Area"]

		}]

}

Example-3:	do	not	apply	any	privilege	config	to	some	categories	of	notifications

"sysnotify":	{

		"texts_dir":	"ui/texts",

		"app_privileges":	[{

				"categories":	["Guest	Area"]

		}]

}

Notification	String	Format

Category:	(Required)	the	category	in	control	panel	>	notification	>	rules	>	categories
Level:	(Required)	one	of	the	value	in	NOTIFICATION_ERROR	/	NOTIFICATION_WARN	/	NOTIFICATION_INFO
Title:	(Optional)	the	event	name	in	control	panel	>	notification	>	rules	>	event
Desktop:	(Required)	the	content	of	the	notification

Example:	System	Notification

Category:	Performance	Alarm

Level:	NOTIFICATION_ERROR

Title:	System	CPU	utilization	exceeds	the	threshold

Desktop:	System	CPU	utilization	exceeds	the	threshold.

The	system	CPU	utilization	has	reached	%VALUE%%,	which	exceeds	the	pre-defined	value	of	%THRESHOLD%%.

From	%HOSTNAME%

Example:	Only	For	Desktop	Notification

Category:	File	Station

Level:	NOTIFICATION_INFO

Desktop:	Copied	%FILE%	successfully.

Notification	Level

NOTIFICATION_ERROR:	desktop	/	mail	/	sms	/	mobile	/	cms
NOTIFICATION_WARN:	desktop	/	mail	/	mobile	/	cms
NOTIFICATION_INFO:	desktop	/	cms

Notifcation	Target

the	mail	string	can	specify	the	notification	target,	it	has	higher	priority	than	category

Category:	Performance	Alarm

Level:	NOTIFICATION_WARN

Desktop:	there	is	a	performance	alram

Target:	desktop,mail,sms,mobile,cms

The	system	has	detected	a	performance	issue

Resource	List

125

Notification	Variable

variables	can	only	be	used	in		Desktop	

Variable Example	Value

%COMPANY_NAME% Synology	DiskStation

%HOSTNAME% Synology	DiskStation

%IP_ADDR% 192.168.1.2

%HTTP_URL% http://192.168.1.2:5000

%DATE% 2022-1-1

%TIME% 09:00

%OSNAME% DSM

Notification	Send	Approach

usage

/usr/syno/bin/synonotify	<mail_string_key>	<mail_string_custom_variables>

/usr/syno/bin/synodsmnotify	<user/group>	<mail_string_key>	<mail_string_custom_variables>

example

/usr/syno/bin/synonotify	CpuFanResume	'{"%FANID%":	1,"DESKTOP_NOTIFY_TITLE":	"mainmenu:leaf_packagemanage",	"DESKTOP_NOTI

FY_CLASSNAME":	"SYNO.SDS.App.FileStation3.Instance"}'

Resource	List

126

http://192.168.1.2:5000

Syslog	Config

Description

Install	/	uninstall	the	syslog-ng	and	logrotate	config	file	during	package	start	/	stop.

Please	refer	to	syslog-ng	on	how	to	write	the	syslog-ng's	config	file.

	Acquire()	:	Copy	patterndb	/	logratoate	to	/usr/local/etc/syslog-ng/patterndb.d/	/	/usr/local/etc/logrotate.d/.	Then	reload	syslog-ng.
If	file	exists,		unlink()		it	first.
Failure	on	any	file	copy	results	in	this	worker	to	abort	and	triggers	rollback.

	Release()	:	Delete	the	config	files	and	reload	syslog-ng.
Ignore		unlink()		failure.

Provider

DSM

Timing

	FROM_STARTUP_TO_HALT	

Environment	Variables

None

Updatable

No

Syntax

"syslog-config":	{

		"patterndb-relpath":	"<relpath>",

		"patterninc":	[

				{

								"target-dir":	"not2msg"

								"conf-relpath":	"<relpath>"

				},

				{

								"target-dir":	"not2kern"

								"conf-relpath":	"<relpath>"

				}

],

		"logrotate-relpath":	"<relpath>"

}

Member Since Description

	patterndb-

relpath	

6.0-
7145

String,	syslog-ng's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore	this	if
the	log	is	not	generated	by	syslog-ng	(optional)

	patterndb-

inc	

6.1-
7610

object	array,	List	of	patterndb-inc	configs.	It	defines	extra	syslog-ng	configs	to	be	installed	in
specified	path	under	the	syslog	configuration	folder

	target-dir	
6.1-
7610 String,	The	installation	target	path	under	/usr/local/etc/syslog-ng/patterndb.d/include/

	conf- 6.1- String,	The	installation	source	path	which	is	relative	to	/var/packages/${package}/target/

Resource	List

127

https://syslog-ng.org/

relpath	 7610 Usually	used	to	store	some	extra	syslog	filter

	logrotate-

relpath	

6.0-
5911

String,	logrotate's	config	file's	relative	path	under	/var/packages/${package}/target/,	ignore	this	if	log
is	saved	to	database	(optional)

Example

"syslog-config":	{

		"patterndb-relpath":	"etc/syslog-ng.conf",

		"patterninc":	[

				{

								"target-dir":	"not2msg"

								"conf-relpath":	"etc/NotLog2Msg"

				},

				{

								"target-dir":	"not2kern"

								"conf-relpath":	"etc/NotLog2Kern"

				}

],

		"logrotate-relpath":	"etc/logrotate.conf"

}

Please	save	your	package	log	under	/var/packages/[package_id]/var/	(e.g.,	/var/packages/TextEditor/var/log/texteditor.log)

Resource	List

128

Web	Service	(since	DSM7.0)

Description

When	in	install/remove	package	stage,	worker	will	update/remove	service	and	default	portal	setting.

When	in	start/stop	package	stage,	worker	will	start/stop	service	setting.

FROM_PREINST_TO_PREUNINST

	Acquire()	:	sync	information	in	user	specified		/var/package/${package}/target/*.json		into	user	setting,	do	migrate	and	setup
portal	and	service	which	user	specify	in	resource	file
	Release()	:	remove	user's	setting

FROM_ENABLE_TO_DISABLE

	Acquire()	:	copy		*.json		and		.mustache		under		/var/packages/${package}/target/		into		/usr/syno/etc/www/app.d/		and	enable
service	setting.
	Release()	:	remove	files	which	copied	into		/usr/syno/etc/www/app.d/		and	disable	service	setting

Provider

WebStation

Timing

	FROM_PREINST_TO_PREUNINST			FROM_ENABLE_TO_DISABLE	

Lower	privilege

According	to	package	center	privilege	policy,	web	package	will	get	a	confined	privilege	during	installation	and	run	time.	In	order	to	setup
environment	for	web	package,	webservice	worker	provide	a	mechanism	called		pkg_dir_prepare		to	assist	web	package	creating	website
root	directory	and	setting	corresponding	owner,	group.	The	detail	of	pkg_dir_prepare	will	be	elaborate	in	pkg_dir_prepare	section.

Environment	Variables

None

Updatable

No

Syntax

"webservice":{

				"services":	[{

								service	setting	1

				},{

								service	setting	2

				}...],

				"portals":	[{

								default	portal	setting	1

				},{

								default	portal	setting	2

				}],

				"migrate":	{

								Migration	data

				},

Resource	List

129

				"pkg_dir_prepare":	[{

								package	directory	prepare	settings

				}]

}

Key Since Type Required Nullable Default
Value Description

	services	
3.0.0-
0214 Array true false N/A List	services	which	are	wanted	to	be

registered

	portals	
3.0.0-
0214 Array false true Empty

array
List	default	portal	for	services
(Unnecessary)

	migrate	
3.0.0-
0214 Object false true Empty

object Migrate	information	(Unnecessary)

	pkg_dir_prepare	
3.0.0-
0256 Array true false Empty

array
Setting	specification	of	website	root
under	web_package

Framework	will	use	default	value	when	field	is	not	required	and	doesn't	exist	or	is	null.

services

Web	services	which	are	going	to	register,	allow	multiple	web	services	to	register.	For	more	detail	please	see	Web	Service

portals

Default	portal	which	are	going	to	register	for	access	portal	of	services	and	will	craete	UI	Shortcut.	Devided	into		server	portal		and
	alias	portal	.

Important:	Default	server	portal	is	not	allowed	registered	as	name	base	portal,	since	you	may	not	be	able	to	lookup	FQDN's
correct	IP	from	client	side.

Example:

Alias	Portal

{

				"service":	"wordpress",

				"name":	"wordpress",

				"app":	"SYNO.SDS.WordPress",

				"type":	"alias",

				"alias":	"wordpress"

}

Server	Portal

{

				"service":	"wordpress",

				"name":	"wordpress",

				"app":	"SYNO.SDS.WordPress",

				"type":	"server",

				"http_port":	[9000],

				"https_port":	[9001]

}

Key Since type Required Nullable Default
Value Description

service 3.0.0-
0214 string true false N/A

portal	service	name	that	portal	link,
corresponding	to		service		field	in	service
that	is	about	to	register

name 3.0.0-
0214 string true false N/A portal	name

display_name 3.0.0-
0302 string false true same	as

name the	title	of	web	UI	portal	shortcut

Resource	List

130

app 3.0.0-
0214 string false true empty

string pacakge's	UI	App	name

type 3.0.0-
0214 string true false N/A portal's	type,	could	be	alias	or	server

alias 3.0.0-
0214 string

true	(if
type	is
alias)

false N/A alias	name

http_port 3.0.0-
0214

int
array false false

empty
array	(if
type	is
server)

Http	port	setting	for	server	portal,	only	1
port	allowed.	There	should	be	at	least
http_port	or	https_port	or	both.

https_port 3.0.0-
0214

int
array false false

empty
array	(if
type	is
server)

Https	port	setting	for	server	portal,	only
1	port	allowed.	There	should	be	at	least
http_port	or	https_port	or	both.

migrate

Migrate	assist	package	migration	from	older	version	(<	DSM7.0)	to	newer	version.	Supporting	two	kinds	of	migrate	setting	-		root	
and		vhost	.

root

"root":	[{

				"old":	"wordpress",

				"new":	"wordpress"

}]

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 array false true empty

array
Migrate	web	package	from	web	share	folder	to
web_packages	share	folder.

old 3.0.0-
0214 string true false N/A name	of	old	package	which	in	web	share	folder.

new 3.0.0-
0214 string true false N/A name	of	new	package	which	in	web_packages

share	folder.

vhost

"vhost":	[{

				"root":	"wordpress",

				"service":	"wordpress"

}]

Key Since type Required Nullable Default
Value Description

vhost 3.0.0-
0222 array false true empty

array
Migrate	virtualhost,	which	pointing	to	old
package,	to	service	portal.

root 3.0.0-
0222 string true false N/A name	of	old	pacakge	which	in	web	share	folder.

service 3.0.0-
0222 string true false N/A new	package's	service	name

pkg_dir_prepare

Resource	List

131

Webservice	worker	will	set	up	website	root	directory	under		web_packages		according	to	the	information	web	package	specified	in	worker
config.	The	worker	will	remove	the		target		directory	under	web_package	between	preuninst	and	postuninst.	Make	sure	to	backup
your	website	root	in	preuninst	script	during	upgrade.

pkg_dir_prepare	example:

"pkg_dir_prepare":	[{

				"source":	"/var/package/WordPress/target/src",

				"target":	"wordpress",

				"mode":	"0755",

				"group":	"http",

				"user":	"WordPress"

}]

Key Since type Required Nullable Default
Value Description

source 3.0.0-
0256 string false true N/A

Your	web	package	source	code	directory.	Mostly
it	will	be	under	package	target	path
(/var/package/$PKG_NAME/target/).	Webservice
worker	will	move	your		source		directory	to
	target		directory	and	set	owner	group	according
to	your		user:group		specification.	Note	that	you
should	specify	a	full	path	in		source		field.

target 3.0.0-
0256 string true false N/A

Your	website	root	directory.		target		directory	wil
be	created	under	web_packages	directory.
Webservice	worker	will	move		source		directory
to		target		and	setted	with	corresponding	owner
group	according	to	your		user:group	
specification.	You	sould	only	specify	a	relative
path	based	on	web_packages.	Note	that	when
	source		field	is	not	specified,	webservice	worker
will	only	create		target		directory	and	set	owner
group	for		target		directory.

mode 3.0.0-
0256 string true false N/A 	target		directory	access	mode	e.g.	"0755",

"0644"	...	etc.

group 3.0.0-
0256 string true false N/A Name	of		target		directory	group	ownership.

user 3.0.0-
0256 string true false N/A Name	of		target		directory	user	ownership.

Web	Service

Package	could	register	to	WebStation	via	WebStation	webapi	or	Package	Worker.

Web	Service	support	following	types
static	service

static	web	pages	web	services
nginx_php	service

web	service	that	useing	Nginx	as	HTTP	server	and	PHP	as	scripts,	e.g.	phpMyAdmin
Will	generate	PHP	Profile	after	service	registered.	You	can	modify	it	in	WebStation	->	Script	Language	Settings	->	PHP.

apache_php	service
web	service	that	using	Apache	as	HTTP	server	adn	PHP	as	scripts,	e.g.	WordPress
Will	gengerate	PHP	Profile	after	service	registerd.	You	can	modify	it	in	WebStation	->	Script	Language	Settings	->	PHP.

reverse_proxy	service
web	service	depending	on	reverse	proxy,	e.g.	Docker-GitLab

common	field

Resource	List

132

Key Since type Required Nullable Default
Value

Description

service 3.0.0-
0214 string true false N/A service	name

display_name 3.0.0-
0214 string true false N/A service	display	name

display_name_i18n 3.0.0-
0214 string false true null service	displayed	in	different

language	(optional)

support_alias 3.0.0-
0214 bool false false true Whether	support	alias	portal,

downgrade	is	not	allowed

support_server 3.0.0-
0214 bool false false true Whether	suport	server	portal,

downgrade	is	not	allowed

icon 3.0.0-
0214 string false true null

icon	path,	relative	path	from
package's		target	.	Resolution
should	replaced	in		{0}	.	For	now,
we	only	support	png	format.	Will
use	default	icon	if	this	field	is	empty.

type 3.0.0-
0214 string true false N/A service	type

php 3.0.0-
0214 object true false N/A

php-fpm	setting	including
	profile_name	,		backend	,
	open_basedir	,		extensions	,	...	etc.
The	detail	will	be	shown	as
following	section.

Detail	of	php	profile

Key Since type Required Nullable Default
Value Description

profile_name 3.0.0-
0214 string true false N/A Name	of	default	php	profile,	user	may	not

modify	this	field.

profile_desc 3.0.0-
0214 string true false N/A Description	of	php	profile

backend 3.0.0-
0214 int true false N/A

php	version,	3	for	PHP5.6,	4	for	PHP7.0,
5	for	PHP7.1,	6	for	PHP7.2	and	7	for
PHP7.3,	user	may	not	modify	this	field

open_basedir 3.0.0-
0214 string false true empty

string
default	php	open_basediruser	may
modify	this	field.

extensions 3.0.0-
0214

string
array false true empty

array

default	switched	on	php	extension,	user
may	not	switch	of	these	php	extension;
however,	they	may	switch	on	others

php_settings 3.0.0-
0214 object false true empty

object
key	value	pairs,	define	php	ini	setting,	user
may	modify	this	field.

user 3.0.0-
0256 string true false N/A

Name	of	user	with	privilege	while	php-
fpm	accessing	your	website.	Note	that	the
value	of		user		should	be	the	same	as
pkg_dir_prepare	user	in	order	to	access
your	website	correctly.

group 3.0.0-
0256 string true false N/A

Name	of	group	with	privilege	while	php-
fpm	accessing	your	website.	Note	that	the
value	of		group		should	be	the	same	as
pkg_dir_prepare	group	in	order	to	access
your	website	correctly.

Resource	List

133

static	service

When	type	is	static,	system	will	serve	your	pacakge	with	nginx.

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 string true false N/A

service	working	directory,	will	be
treated	as	absolute	path	if	start	with
	/	,	otherwise,	relative	path	to
	web_pacakges	

index 3.0.0-
0214

string
array false true ["index.html",

"index.html"]
static	service's	index	file.	note	use
default	value	if		null		in	this	field

custom_rule 3.0.0-
0214 object false true empty	object Support	customized	routing	rule.	For

more	detail,	please	see	Custom	rule

static	service	worker	setting	example:

{

								"service":	"static",

								"display_name":	"static	service",

								"support_alias":	true,

								"support_server":	true,

								"type":	"static",

								"root":	"static_dir",

								"icon":	"ui/Wordpress_{0}.png"

				}

nginx_php	service

When	type	is	nginx_php,	system	will	serve	your	package	with	nginx.	The	php	file	will	be	executed	by	php-fpm.	Php-fpm	default
behavior	can	be	defined	in	field	`php

Key Since type Required Nullable Default
Value Description

root 3.0.0-
0214 string true false N/A

service	working	directory,	will	be
treated	as	absolute	path	if	start
with		/	,	otherwise,	relative	path
to		web_pacakges	

index 3.0.0-
0214

string
array false true

["index.htm",
"index.html",
"index.php"]

nginx	service's	index	file.	note	use
default	value	if		null		in	this	field.

custom_rule 3.0.0-
0214 object false true empty	object

Support	customized	routing	rule.
For	more	detail,	please	see	Custom
rule

connect_timeout 3.0.0-
0214 int false false 60 timeout	setting	for	connecting

php-fpm,	in	units	of	second

read_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	getting
response	from	php-fpm,	in	units
of	second

send_timeout 3.0.0-
0214 int false false 60 timeout	setting	for	sending	request

to	php-fpm,	in	units	of	second

php 3.0.0-
0214 object true false N/A define	default	php	profile

nginx_php	service	worker	setting	example:

{

								"service":	"wordpress",

Resource	List

134

								"display_name":	"WordPress",

								"support_alias":	true,

								"support_server":	true,

								"type":	"nginx_php",

								"root":	"wordpress",

								"icon":	"ui/Wordpress_{0}.png",

								"php":	{

												"profile_name":	"WordPress	Profile",

												"profile_desc":	"PHP	Profile	for	WordPress",

												"backend":	6,

												"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

												"extensions":	[

																"mysql",

																"mysqli",

																"pdo_mysql",

																"curl",

																"gd",

																"iconv"

],

												"php_settings":	{

																"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysqli.default_socket":	"mysqli.default_socket",

																"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysql.default_port":	"3307",

																"mysqli.default_port":	"3307"

												}

								},

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

apache_php	service

When	type	is	apache_php,	nginx	will	pass	request	to	apache	server.	The	php	file	will	be	executed	by	php-fpm.	Php-fpm	default
behavior	can	be	defined	in	field		php	.	Compare	to	nginx_php,	apache_php	with	additional	filed		backend		to	specify	apache	version

Key Since type Required Nullable Default
Value Description

backend 3.0.0-
0214 int true false N/A 1	(Apache2.2)	or	2

(Apache2.4)

intercept_errors 3.0.0-
0284 bool false false true true	(on)	or	false	(off)

apache_php	service	worker	setting	example:

{

								"service":	"wordpress",

								"display_name":	"WordPress",

								"support_alias":	true,

								"support_server":	true,

								"type":	"apache_php",

								"root":	"wordpress",

								"backend":	2,

								"icon":	"ui/Wordpress_{0}.png",

								"php":	{

												"profile_name":	"WordPress	Profile",

												"profile_desc":	"PHP	Profile	for	WordPress",

												"backend":	6,

												"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

												"extensions":	[

																"mysql",

																"mysqli",

																"pdo_mysql",

																"curl",

																"gd",

																"iconv"

Resource	List

135

],

												"php_settings":	{

																"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysqli.default_socket":	"mysqli.default_socket",

																"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																"mysql.default_port":	"3307",

																"mysqli.default_port":	"3307"

												}

								},

								"intercept_errors":	false,

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

reverse_proxy	service

When	type	is	reverse_proxy,	nginx	will	proxy	request	to	target	services

Key Since type Required Nullable Default
Value Description

proxy_target 3.0.0-
0214 string true false N/A

Proxy	target,	support	http,
https,	and	unix.	This	value	will
be	filled	in	nginx	proxy_pass
URL.	For	more	detail	please	see
proxy_pass

proxy_headers 3.0.0-
0214 array false true empty

array
define	proxy	relay	header	value
pair	list

proxy_intercept_errors 3.0.0-
0284 bool false false false

specify	whether	letting	nginx
return	error	page	for	your
packages	if	there's	an	error	occur.
Default	is	setting	to		false	

proxy_http_version 3.0.0-
0214 int false false 1 proxy	http	version,	support	1.0

(0),	1.1	(1)

custom_rule 3.0.0-
0214 object false true empty

object

define	specific	routing	rule,
should	be	compatible	with
support_alias	and
support_server	setting.	For	more
detail	please	see	custom	rule

connect_timeout 3.0.0-
0214 int false false 60 timeout	setting	for	connecting

proxy	target,	in	units	of	second

read_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	getting
response	from	proxy	target,	in
units	of	second

send_timeout 3.0.0-
0214 int false false 60

timeout	setting	for	sending
request	to	php-fpm,	in	units	of
second

You	could	define	proxy	header	to	modify	proxy	behavior,	e.g.	modify	host	or	turn	on	websocket.	If	need	support	of	websocket,	you
should	specify	Upgrade	and	Connection	header	as	shown	below:

Key Since type Required Nullable Default	Value Description

name 3.0.0-0214 string true false N/A header	name

value 3.0.0-0214 string true false N/A header	value

reverse_proxy	service	worker	setting	example:

{

								"service":	"gitlab",

Resource	List

136

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_pass

								"display_name":	"Git	Lab",

								"support_alias":	true,

								"support_server":	true,

								"type":	"reverse_proxy",

								"icon":	"ui/gitlab_{0}.png",

								"proxy_target":	"http://gitlab:30000",

								"proxy_headers":	[{

												"name":	"host",

												"value":	"gitlab"

								},{

												"name":	"Upgrade",

												"value":	"$http_upgrade"

								},{

												"name":	"Connection",

												"value":	"$connection_upgrade"

								}]

								"connect_timeout":	60,

								"read_timeout":	3600,

								"send_timeout":	60

				}

Custom	Rule

You	could	modify	config	via	custom_rule	field	in	json	key	value	format.	Json	key	is	target	name,	json	value	is	target	config's
mustache	file	path
You	can	reference		nginx_service_template.mustache	,		apache22_service_template.mustache		and
	apache24_service_template.mustache		under		/var/packages/WebStation/target/misc		for	routing	rule	that	you	can	modify.
Field	{{	\@json	key\@	}}	in	mustache	template	will	be	replaced	by	files	specified	in	custom_rule
You	should	consider	the	compatibility	between		server		and		alias	,	and	could	use	{{#alias}}	to	seperate	these	two	different
routing	rules.

Custom	rule	example:

"custom_rule":	{

				"global_rule":	"/var/packages/WordPress/target/misc/nginx_global.mustache",

				"fastcgi_rule":	"/var/packages/WordPress/target/misc/nginx_fastcgi.mustache",

				"proxy_rule":	"/var/packages/WordPress/target/misc/nginx_proxy.mustache",

				"apache_rule":	"/var/packages/WordPress/target/misc/apache.mustache"

}

Custom	rule	type

key affect	target affect	service
type effect

global_rule Nginx all modify	service's	request	behavior

fastcgi_rule Nginx nginx_php modify	behavior	of	request	passed	to
php-fpm

proxy_rule Nginx reverse_proxy modify	behavior	of	request	passed	to
proxy	target

apache_rule Apache2.2	or	Apache2.4	(depends	on
apache	backend) apache_php modify	apache	behavior

Resource	List

137

Web	Config	(since	DSM7.2)

Description

This	worker	handles	the	Nginx	static	config.

Make	the	registered	nginx	static	config	take	effect	at	its	desired	time.
The	required	resources	can	be	registered	synchronously,	including	port	and	80/443	alias.	It	can	be	declared	separately	without
additionally	specifying	config.

FROM_POSTINST_TO_PREUNINST

	Acquire()	:	copies	all	registered	configs	under		/var/packages/${package}/target/		to	the	corresponding	nginx	available	folder	and
create	a	config	link	with	a	timing	of	disable	to	the	corresponding	nginx	enable	folder.
	Release()	:	removes	all	available	configs	and	enable	links.

FROM_STARTUP_TO_HALT

	Acquire()	

removes	the	enable	config	link	whose	timing	is	disable	from	the	corresponding	nginx	folder
creates	the	config	link	whose	timing	is	enable	to	the	corresponding	nginx	folder

	Release()	

removes	the	enable	config	link	with	a	timing	of	enable	from	the	corresponding	nginx	folder
create	the	config	link	with	a	timing	of	disable	to	the	corresponding	nginx	folder

Note

When	creating	an	enable	link,	it	will	first	lock	and	test	the	nginx	config	to	avoid	race	conditions	and	to	ensure	that	it	does	not
conflict	with	the	enabled	config.
Acquire	will	end	immediately	if	any	failures	occur	during	the	process.	Release	will	finish	as	much	as	possible	even	if	errors	occur
during	the	process.
If	a	config	registers	enable	and	disable	the	timing	at	the	same	time,	the	config	will	create	an	enable	link	after	the	Package	is	installed
and	delete	the	enable	link	when	the	Package	is	removed.	Package	enable/disable	will	not	operate	the	link.
When	the	configuration	is	copied	to	the	available	folder,	its	name	will	be	hash	calculated,	and	the	corresponding	prefix	and	suffix
will	be	added.	There	is	no	need	to	worry	about	collisions	with	other	or	your	own	configurations.	The	converted	configuration	name
will	be	{prefix	of	type}.{package}-hash({path}).conf.
Worker	will	not	reload	nginx,	if	you	need	to	reload	nginx	service,	please	following	the	instructions	below:

if	there	is	a	config	with	timing	as	enable,	package	owner	needs	to	marked		instuninst_restart_services	=	nginx.service		in
INFO
if	there	is	a	config	with	timing	as	disable,	package	owner	needs	to	marked		instuninst_restart_services	=	nginx.service	
	startstop_restart_services	=	nginx.service		in	INFO

Registering	port	resources	is	limited	to	allowing	nginx	framework	to	assist	in	reserving	and	confirming	the	use	of	the	port	number.
The	package	still	needs	to	write	a	port	config	worker	to	register	the	port	number.

Provider

DSM

Timing

	FROM_POSTINST_TO_PREUNINST			FROM_STARTUP_TO_HALT	

Environment	Variables

Resource	List

138

None

Updatable

No

Syntax

"web-config":	{

		"nginx-static-config":	{

		"enable":	[{

				"type":	"<config	type>",

				"relpath":	"<config	relpath>",

				"ports":	[{

				"port":	<config	port	used>",

				"protocol":	<config	port	protocol	used>",

				"schema":	<config	port	schema	used>",

				}],

				"alias":	["<config	alias	used>"]

		}],

		"disable":	[{

				"type":	"<config	type>",

				"relpath":	"<config	relpath>",

				"ports":	[{

				"port":	<config	port	used>",

				"protocol":	<config	port	protocol	used>",

				"schema":	<config	port	schema	used>",

				}],

				"alias":	["<config	alias	used>"]

		}]

		}

}

nginx-static-config

Member Since Description

	nginx-

static-config	

7.0-
40120 List	the	nginx	static	config	to	be	used	by	the	package

	enable	
7.0-
40120 List	the	nginx	static	config	to	be	applied	when	the	package	is	enabled

	disable	
7.0-
40120 List	nginx	static	config	to	be	applied	when	the	package	is	disabled

	type	
7.0-
40120

The	type	of	config	to	be	placed	determines	its	include	position	in	nginx	config.	Currently	supports
dsm,	www,	http,	server,	x-accel,	main

	relpath	
7.0-
40120 The	relative	path	of	the	config	to	be	placed	under		/var/packages/${package}/target/	

	port	
7.1-
42446 Declare	the	port	number	used

	protocol	
7.1-
42446 Declare	the	port	number	protocol	used,	can	be	filled	in	tcp/udb/both

	schema	
7.1-
42446 Declare	the	port	number	schema	used,	http/https	can	be	filled

	alias	
7.1-
42446 The	80/443	alias	used	for	the	declaration

type

Name Since Description

Resource	List

139

dsm 7.0-
40120 Valid	for	DSM	Server	block	and	DSM	custom	domain	block	(5000/5001)

www 7.0-
40120 Valid	for	Default	server	block	(80/443)

http 7.0-
40120 Valid	for	HTTP	context

server 7.0-
40120 Independent	server	block

x-
accel

7.0-
40120

Valid	for	DSM	Server	block,	DSM	custom	domain	block	and	Default	server	block,	used	to	place	x-accel
settings

main 7.0-
40227

Valid	for	HTTP	Context.	It	can	place	independent	stream	block,	mail	block	or	other	settings	that	do	not
belong	to	HTTP	Context

Example

{

		"web-config":	{

				"nginx-static-config":	{

						"enable":	[{

								"type":	"www",

								"relpath":	"synology_added/enable",

								"alias":	[

										"www-test"

]

						},

						{

								"type":	"http",

								"relpath":	"synology_added/install"

						},

						{

								"type":	"server",

								"relpath":	"synology_added/enable",

								"ports":	[{

										"port":	50400,

										"protocol":	"tcp",

										"schema":	"http"

								}]

						},

						{

								"ports":	[{

										"port":	50455,

										"protocol":	"tcp",

										"schema":	"http"

								}],

								"alias":	[

										"unique-test"

]

						}],

						"disable":	[{

								"type":	"x-accel",

								"relpath":	"synology_added/disable"

						},

						{

								"type":	"http",

								"relpath":	"synology_added/install"

						},

						{

								"type":	"dsm",

								"relpath":	"synology_added/disable"

						}]

				}

		}

}

Resource	List

140

Resource	List

141

Port
If	your	package	service	uses	specific	ports	for	communication	(e.g.	Surveillance	Station	uses	ports	19997/udp	for	source	port	and
19998/udp	for	destination	port),	you	should	prepare	a	service	configuration	file	for	this	package	to	describe	which	ports	will	be	used.
After	that,	once	the	user	creates	firewall	rules	or	port	forwarding	rules	from	the	built-in	application,	your	package	service	will	also	be
listed	for	selection.

Service	Configure	File	Name

The	file	name	should	follow	the	naming	convention	[package_name].sc	(ex:	SurveillanceStation.sc).	[package_name]	should	be	the
package	name	that	is	specified	by	the	key	"package"	in	the	INFO	file,	and	sc	means	Service	Configure	file.

Configure	Format	Template

Please	see	the	following	example:

[service_name]

title="English	title"

desc="English	description"

port_forward="yes"	or	"no"

src.ports="ports/protocols"

dst.ports="ports/protocols"

[service_name2]

…

Section/Key	Descriptions

Please	see	the	following	statements	for	the	strings	and	keys:

Section/Key Description Value Default
Value

DSM
Requirement

service_name

Required	

Usually	a	package	only	has	one	unique	service
name.	If	your	package	needs	more	than	one	port
description,	you	can	define	service_name2,
service_name3,	…	

Note:	service_name	cannot	be	empty	and	can	only
include	characters	“a~z”,	“A~Z”,	“0~9”,	“-”,	“\”,
“.”

Unique	service
name N/A 4.0-2206

title

Required	

English	title	which	will	be	shown	on	field	Protocol
at	firewall	build-in	selection	menu.

English	title N/A 4.0-2206

desc

Required	

English	description	which	will	be	shown	on	field
Applications	at	firewall	build-in	selection	menu.

English
description N/A 4.0-2206

port_forward

Optional	

If	set	to	“yes,”	your	package	service	related	ports
will	be	listed	when	users	set	port	forwarding	rule
from	build-in	applications.	Otherwise	they	will	not

“yes”	or	“no” “no” 4.0-2206

Port

142

be	listed.

src.ports

Optional	

If	your	package	service	has	specified	source	ports,
you	can	set	them	in	this	key.	The	value	should
contain	at	least	the	port	numbers,	and	a	default
protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	source	ports	are
6000,	7000	to	8000,	all	ports	are	tcp	+	udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by	‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

dst.ports

Required	

Each	service	should	have	destination	ports.	The
value	should	contain	at	least	the	port	numbers,	and	a
default	protocol	that	is	tcp	+	udp.	

Ex:	6000,7000:8000/tcp,udp	means	destination
ports	are	6000,	7000	to	8000,	all	ports	are	tcp	+
udp.

ports/protocols	
ports:	1~65535	
(separated	by	‘,’
and	use	‘:’	to
represent	port
range)	
protocols:	
tcp,udp	
(separated	by	‘,’)

ports:	
N/A	

protocols:
tcp,udp

4.0-2206

Please	see	the	following	example	(SurveillanceStation.sc):

[ss_findhostd_port]

title="Search	Surveillance	Station"

desc="Surveillance	Station"

port_forward="yes"

src.ports="19997/udp"

dst.ports="19998/udp"

After	the	service	configuration	file	is	ready,	add	the	following	content	to	the	resource	specification	file.	Please	refer	to	Port	Config	for
more	detail.

"port-config":	{

				"protocol-file":	"port_conf/xxdns.sc"

	}

Check	port	conflict
Before	trying	to	change	a	port	number,	you	would	need	to	check	if	the	port	number	was	already	in	use.

How	to	check	if	the	port	number	was	in	use
Assume	the	package	named	DhcpServer	and	the	port-config	DhcpServer.sc	contains:

[dhcp_udp]

title="DHCP	Server"

title_key="DHCP	Server"

desc="DHCP	Server"

desc_key="DHCP	Server"

port_forward="no"

dst.ports="67,68/udp"

Please	run	the	following	instructions	to	check	if	the	port	is	in	use	while	you	are	trying	to	change	the	port	number	from		67		to		667	

servicetool	--conf-port-conflict-check		--tcp	667

The	output	would	look	like	this:

Port

143

root@dev:~#	servicetool	--conf-port-conflict-check		--tcp	667

IsConflict:	false							Port:	667							Protocol:	tcp			ServiceName:	(null)

root@dev:~#

The	return	code	does	not	indicate	port	occupation,	you	need	to	parse	the	standard	output	to	extract	the	IsConflict	value.

If	the	IsConflict	value	is	false,	you	can	use	that	port	number	safely.

Port

144

Monitor
The	DSM	manages	resource	by	slices	or	processes.	It	requires	the	information	"who	owns	this	process".	For	packages,	they	should	tell
DSM	which	daemon	belongs	to	them.

All	you	have	to	do	is	to	fill	the		Slice		field	in	your	systemd	unit	with		[package_name].slice	.	Here	is	an	example	field	from	units	for
MyPackage:

...

[Service]

Slice=MyPackage.slice

...

If	the	field	is	properly	set,	you	should	be	able	to	see	your	package	shown	on	the	resource	monitor.

Monitor

145

Package	Examples
Open	Source	Tool:	tmux
Open	Source	Tool:	nmap
Docker	package
Web	Package:	WordPress

Package	Examples

146

Compile	Open	Source	Project
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.	If	you	wish	to	compile
the	open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

You	have	to	create	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before	using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to	be
installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are	missing
on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the	required
conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script
manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,		RANLIB	,
	CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	.

In	this	chapter,	we	will	use	platform	avoton	as	our	example.

Preparation:

First	download	the	tmux	source	code	from	the	official	github	site	or	you	can	download	example	tmux	package	project	from	this	link.

Note:	The	archive	file	you've	downloaded	from	the	above	links	is	different	from	the	official	tmux	source	code.	We	have	added	the
necessary	build	scripts.

Project	Layout:

tmux/

				├──	tmux	related	source	code

				├──	SynoBuildConf/

				|			├──	build

				|			├──	depends

				|			└──	install

				└──	synology

								├──	conf/

								├──	scripts/

								└──	INFO.sh

SynoBuildConf/depends:
The	following	is	the	depends	file	for	this	example.	There	is	nothing	special	about	the	depends	file.

[default]

all="7.0"

SynoBuildConf/build:

Open	Source	Tool:	tmux

147

https://github.com/tmux/tmux
https://github.com/SynologyOpenSource/tmux

The	build	script	is	slightly	different	from	the	previous	one.	Here	you	will	have	to	pass	the	following	environment	variables	to	configure:

CC
AR
CFLAGS
LDFLAGS

In	addition,	since	tmux	is	dependent	on	ncurses,	you	will	need	to	use		pkg-config		to	resolve	the	necessary	header	files	and	libraries	for
tmux.

The	following	is	an	example	of	SynoBuildConf/build:

#!/bin/sh

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

NCURSES_INCS="$(pkg-config	ncurses	--cflags)"

NCURSES_LIBS="$(pkg-config	ncurses	--libs)"

CFLAGS="${CFLAGS}	${NCURSES_INCS}"

LDFLAGS="${LDFLAGS}	${NCURSES_LIBS}"

autoreconf	-if

env	CC="${CC}"	AR="${AR}"	CFLAGS="${CFLAGS}"	LDFLAGS="${LDFLAGS}"	\

./configure	${ConfigOpt}

make	${MAKE_FLAGS}

SynoBuildConf/install

Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use		make	install		to	install	the	binaries	and	libraries.	You
can	pass	the	DESTDIR	environment	variable	to	specify	where	you	want	to	install	the	binaries	and	libraries.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

PKG_NAME="tmux"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

InstallTmux()	{

				DESTDIR="${INST_DIR}"	make	install

}

GenerateINFO()	{

				synology/INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

}

InstallSynologyConfig(){

Open	Source	Tool:	tmux

148

				cp	-r	synology/scripts/	"${PKG_DIR}"

				cp	-r	synology/conf/	"${PKG_DIR}"

				cp	synology/PACKAGE_ICON{,_256}.PNG	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				InstallTmux

				GenerateINFO

				InstallSynologyConfig

				MakePackage

}

main	"$@"

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

.	/pkgscripts/include/pkg_util.sh

package="tmux"

version="1.9.1-1001"

os_min_ver="7.0-40850"

displayname="tmux"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="Tmux	package	for	Synology	DSM."

support_url="https://github.com/tmux/tmux"

thirdparty="yes"

startable="no"

silent_install="yes"

silent_upgrade="yes"

silent_uninstall="yes"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	avoton	-c	tmux

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,	You
can	use	manual	install	from	Package	Center	then	connect	to	DSM	via	ssh	to	try		tmux		command.

If	you	failed	to	install	the	package,	it	is	possible	to	find	out	the	error	logs	at		/var/log/messages	.

Open	Source	Tool:	tmux

149

References

Toolkit
Package	Format
Privilege
Resource

Open	Source	Tool:	tmux

150

Compile	Open	Source	Project:	nmap
This	chapter	will	show	you	how	to	build	an	open	source	project	for	your	DSM	system	using	Package	Toolkit.
The	open	source	project	that	we	are	going	to	build	in	this	example	is	nmap,	a	network	scanning	program.	We	will	use	avoton	as	our
build	environment	platform.

If	you	wish	to	compile	an	open	source	project	manually,	please	refer	to	Appendix	B:	Compile	Open	Source	Project	Manually.

You	have	to	create	the	SynoBuildConf/build,	SynoBuildConf/install,	and	SynoBuildConf/depends	before	using	Package	Toolkit.

Unlike	the	previous	example,	compiling	an	application	on	most	open	source	projects	may	require	executing	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	consists	of	many	lines	which	are	used	to	check	some	details	about	the	machine	where	the	software	is	going	to	be
installed.	This	script	will	also	check	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	as	a	reply.	If	any	of	the	major	requirements	are	missing
on	your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	the	required
conditions.	In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script
manually	to	provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,		RANLIB	,
	CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	.

Preparation:

You	can	download	the	projects	by	following	commands:

git	clone	https://github.com/SynologyOpenSource/ExamplePackages.git

cp	-a	ExamplePackages/libpcap	/toolkit/source

cp	-a	ExamplePackages/nmap	/toolkit/source

Our	nmap	&	libpcap	source	code	come	from	here:

wget	https://nmap.org/dist/nmap-7.91.tar.bz2

wget	http://www.tcpdump.org/release/libpcap-1.9.1.tar.gz

Project	Layout:

After	you	download	the	source	code,	your	toolkit	layout	should	look	like	the	following	figure.

/toolkit/

├──	build_env/

│			└──	ds.${platform}-${version}/

│							└──	/usr/syno/

│											├──	bin

│											├──	include

│											└──	lib

├──	pkgscripts-ng/

└──	source/

				├──nmap/

				│			├──	nmap	related	source	code

				│			├──	SynoBuildConf/

				│			|			├──	build

				│			|			├──	depends

Open	Source	Tool:	nmap

151

				│			|			└──	install

				|			└──	synology

				│							├──	PACKAGE_ICON.PNG

				│							├──	PACKAGE_ICON_256.PNG

				│							├──	INFO.sh

				│							├──	conf/

				│							|			├──	privilege

				│							|			└──	resource

				│							└──	scripts/

				└──libpcap/

								├──	libpcap	related	source	code

								├──	Makefile

								└──	SynoBuildConf/

												├──	build

												├──	depends

												├──	install-dev

												└──	install

The	file,	install-dev,	is	a	special	file	which	we	will	be	covered	in	the	following	section.

SynoBuildConf/depends:

The	SynoBuildConf/depends	for	nmap	is	slightly	different	from	the	previous	example.	Since	nmap	depends	on	libpcap,	we	have	to	add
the	value	to	the	BuildDependent	field,	so	that	the	PkgCreate.py	can	resolve	the	dependency	and	compile	the	project	in	the	correct	order.

The	depends	file	for	nmap	is	as	follows.

[BuildDependent]

libpcap

[default]

all="7.0"

However,	the	SynoBuildConf/depends	for	libpcap	is	the	same	as	the	Hello	World	Example.

[BuildDependent]

[default]

all="7.0"

SynoBuildConf/build:
The	SynoBuildConf/build	script	is	also	different	from	the	previous	one.

Here	you	will	have	to	pass	several	environment	variables	to	configure,	so	that	nmap	can	be	compiled	properly

CC
CXX
LD
AR
STRIP
RANLIB
NM
CFLAGS
CXXFLAGS
LDFLAGS

Since	nmap	will	be	compiled	with	many	features	by	default,	we	will	need	to	disable	some	of	them	to	make	it	clean.	The	following	list
contains	the	features	that	will	be	disabled:

Open	Source	Tool:	nmap

152

ndiff
zenmap
nping
ncat
nmap-update
liblua

Note:	If	you	are	interested	in	some	of	the	above	features	and	you	want	to	enable	them,	just	change	the		--without-${feature}	
into		--with-${feature}	.

The	following	is	the	SynoBuildConf/build	for	nmap

#!/bin/sh

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

PKG_NAME=nmap

INST_DIR=/tmp/_${PKG_NAME}

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

LDFLAGS+=$(shell	pkg-config	--libs	libnl	libnl-genl)

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}"	CXXFLAGS="$CXXFLAGS	$CFLAGS"	\

				LDFLAGS="${LDFLAGS}	-ldbus-1"	\

				./configure	${ConfigOpt}	\

				--prefix=${INST_DIR}	\

				--without-ndiff	\

				--without-zenmap	\

				--without-nping	\

				--without-ncat	\

				--without-nmap-update	\

				--without-liblua	\

				--with-libpcap=/usr/local

make	${MAKE_FLAGS}

In	this	example,	--with-libpcap		is	assigned	with	value		/usr/local	.	We	need	to	install	libpcap's	cross	compiled	product	into
"/usr/local"	so	that	nmap's	configure	can	retrieve	libpcap	correctly.

The	following	is	the	SynoBuildConf/build	for	libpcap.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	distclean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

#	prefix	with	/usr/local,	all	files	will	be	installed	into	/usr/local

env	CC="${CC}"	CXX="${CXX}"	LD="${LD}"	AR=${AR}	STRIP=${STRIP}	RANLIB=${RANLIB}	NM=${NM}	\

				CFLAGS="${CFLAGS}	-Os"	CXXFLAGS="${CXXFLAGS}"	LDFLAGS="${LDFLAGS}"	\

				./configure	${ConfigOpt}	\

				--with-pcap=linux	--prefix=/usr/local

Open	Source	Tool:	nmap

153

make	${MAKE_FLAGS}

make	install

The	above	script	will	install	libpcap	related	files	into		/usr/local/		in	chroot	environment.	After	installing	libpcap,	nmap	can	find
libpcap's	cross	compiled	products	in		/usr/local	.

Synology	toolkit	provides		libpcap		in	chroot.

>	dpkg	-l	|	grep	libpcap

ii		libpcap-avoton-dev																		7.0-7274					all								Synology	build-time	library

nmap	can	use	chroot's	libpcap	by	using		${SysRootPrefix}		variable.

--with-libpcap=${SysRootPrefix}

SynoBuildConf/install
Instead	of	copying	the	binary	to	the	destination	folder,	most	big	projects	will	use		make	install		to	install	the	binaries	and	libraries.
Since	we	have	used	the		--prefix		flag	when	configuring	the	nmap	project,	we	can	just	execute	make	install	and	it	will	install	the	nmap
related	files	to	the	folder	specified	by		--prefix	.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

PKG_NAME="nmap"

INST_DIR="/tmp/_${PKG_NAME}"

PKG_DIR="/tmp/_${PKG_NAME}_pkg"

PKG_DEST="/image/packages"

PrepareDirs()	{

				for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

				done

				for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"

				done

}

SetupPackageFiles()	{

				make	install

				synology/INFO.sh	>	INFO

				cp	INFO	"${PKG_DIR}"

				cp	-r	synology/conf/	"${PKG_DIR}"

				cp	-r	synology/scripts/	"${PKG_DIR}"

				cp	synology/PACKAGE_ICON{,_256}.PNG	"${PKG_DIR}"

}

MakePackage()	{

				source	/pkgscripts-ng/include/pkg_util.sh

				pkg_make_package	$INST_DIR	$PKG_DIR

				pkg_make_spk	$PKG_DIR	$PKG_DEST

}

main()	{

				PrepareDirs

				SetupPackageFiles

				MakePackage

}

main	"$@"

Open	Source	Tool:	nmap

154

conf/resource

{

				"usr-local-linker":	{

								"bin":	["bin/nmap"]

				}

}

conf/privilege

{

				"defaults":	{

								"run-as":	"package"

				}

}

INFO.sh
As	mentioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.

#!/bin/sh

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

.	/pkgscripts-ng/include/pkg_util.sh

package="nmap"

version="7.91-1001"

os_min_ver="7.0-40850"

displayname="nmap"

arch="$(pkg_get_platform)	"

maintainer="Synology	Inc."

description="This	package	will	install	nmap	in	your	DSM	system."

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

Note:	Remember	to	set	the	executable	bit	of	INFO.sh	file.

Build	and	Create	Package:

Lastly,	run	the	following	commands	to	compile	the	source	code	and	build	the	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	avoton	-x0	-c	nmap

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

If	the	packing	process	was	successful,	you	will	see	an	spk	file	placed	in	the	result_spk	folder.	To	test	the	spk	file,	You	can	use	manual
install	from	Package	Center	then	connect	to	DSM	via	ssh	to	try		nmap	-v	-A	localhost		command.

If	you	failed	to	install	the	package,	it	is	possible	to	find	out	the	error	logs	at		/var/log/messages	.

References

Open	Source	Tool:	nmap

155

Toolkit
Package	Format
Privilege
Resource

Open	Source	Tool:	nmap

156

Compile	Docker	Package	-	Gitlab
This	chapter	will	show	how	to	compile	a	docker	package	by	using	a	well	known	version	control	opensource	-	Gitlab.

To	create	a	Gitlab	docker	container,	you	only	need	to	depends	on	Docker	package	and	fill	in	docker	worker	configuration	and	the	worker
will	do	the	reset	for	you.

As	mentioned	before,	you	have	to	create	SynoBuildConf/build,	SynoBuildConf/install	and	SynoBuildConf/depends	for	packing
spk.	However,	since	docker	package	will	pull	images	or	build	image	on	the	DSM,	We	don't	need	to	build	any	code	while	packing	the	spk.

Project	Layout:

docker-gitlab

├──	conf

│			├──	privilege

│			└──	resource

├──	INFO.sh

├──	scripts

│			├──	postinst

│			├──	postuninst

│			├──	postupgrade

│			├──	preinst

│			├──	preuninst

│			├──	preupgrade

│			├──	script_customized

│			└──	start-stop-status

├──	SynoBuildConf

│			├──	build

│			├──	depends

│			└──	install

└──	ui

				├──	config.png

				├──	Gitlab_120.png

				├──	Gitlab_16.png

				├──	Gitlab_24.png

				├──	Gitlab_256.png

				├──	Gitlab_32.png

				├──	Gitlab_48.png

				├──	Gitlab_64.png

				└──	Gitlab_72.png

INFO.sh:

We	will	use	INFO.sh	to	generate	the	INFO	file.	The	following	is	the	INFO.sh	file	for	this	example.	For	more	details	of	each	key's
purpose,	please	see	INFO.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

package="wordpress_sample"

.	"/pkgscripts-ng/include/pkg_util.sh"

version="12.9.0-1"

os_min_ver="7.0-40337"

install_dep_packages="Docker>=18.09.0-1017"

maintainer="Gitlab"

thirdparty="yes"

arch="avoton"

adminurl="wordpress"

dsmuidir="ui"

displayname="Gitlab"

Docker	package

157

package_icon="`/pkgscripts-ng/include/base64.php	${ICON_PATH}`"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

SynoBuildConf/depends:
The	following	is	the	depends	file	for	this	example.

[default]

all="7.0"

SynoBuildConf/build:
The	following	is	the	build	file	for	this	example.	Since	WordPress	is	depends	on	PHP,	there	is	nothing	to	do	in	build.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	clean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

make	${MAKE_FLAGS}

SynoBuildConf/install:

The	following	is	the	install	file	for	this	example.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

#	set	include	projects	to	install	into	this	package

INST_DIR="/tmp/_Gitlab"						#	temp	folder	for	dsm	files

PKG_DIR="/tmp/_Gitlab_pkg"			#	temp	folder	for	package	files

PKG_DEST="/image/packages"

#	prepare	install	and	package	dir

for	dir	in	$INST_DIR	$PKG_DIR;	do

								rm	-rf	"$dir"

done

for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

								mkdir	-p	"$dir"	#	use	default	mask

done

[-d	$INST_DIR/ui]	||	install	-d	$INST_DIR/ui

cp	-a	ui/*	$INST_DIR/ui

[-d	$PKG_DIR]	||	install	-d	$PKG_DIR

[-d	$PKG_DIR/scripts]	||	install	-d	$PKG_DIR/scripts

cp	-a	conf	$PKG_DIR

cp	-a	scripts/*	$PKG_DIR/scripts

chmod	755	$PKG_DIR/scripts/*

Docker	package

158

./INFO.sh	>	INFO

install	-c	-m	644	INFO	$PKG_DIR

.	"/pkgscripts-ng/include/pkg_util.sh"

pkg_make_package	$INST_DIR	$PKG_DIR

pkg_make_spk	$PKG_DIR	$PKG_DEST

UI	config:
UI	config	is	placed	in		ui		folder.

{

				".url":	{

								"SYNO.SDS.GitLab":	{

												"allUsers":	true,

												"desc":	"Docker-GitLab",

												"icon":	"images/Docker_GitLab_SynoCommunity-{0}.png",

												"port":	"@PORT@",

												"protocol":	"http",

												"texts":	"texts",

												"title":	"GitLab",

												"type":	"url",

												"url":	"/"

								}

				}

}

Scripts:
The	following	are	spk	scripts	for	installing	docker	Gitlab	spk	into	DSM.

preinst:	There	is	nothing	to	do	for		preinst		in	this	example.	You	can	customize	your	own		preinst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postinst:	In		postinst		stage,	we	set	up	port	in	ui/config	after	user	specify	in	install	wizard.

#!/bin/sh

PKG_NAME="Gitlab"

PORT_CONFIG_FILE="/var/packages/$PKG_NAME/etc/port_config"

port=""

if	[!	-z	"$wizard_http_port"];	then

				#	new	install

				port="$wizard_http_port"

elif	[-f	"$PORT_CONFIG_FILE"];	then

				#	upgrade

				port=$(get_key_value	"$PORT_CONFIG_FILE"	port)

fi

echo	"port=$port"	>	$PORT_CONFIG_FILE

if	[-f	"$SYNOPKG_PKGDEST/app/config"];	then

				sed	-i	"s/@PORT@/$port/g"	"$SYNOPKG_PKGDEST/ui/config"

fi

exit	0

Docker	package

159

preuninst:	There	is	nothing	to	do	in		preuninst		in	this	example.	You	can	customize	your	own		preuninst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postuninst:	In		postuninst		stage,	we	remove	gitlab	port	configuration	file.

#!/bin/sh

PKG_NAME="Gitlab"

PORT_CONFIG_FILE="/var/packages/$PKG_NAME/etc/port_config"

if	["$SYNOPKG_PKG_STATUS"	=	"UNINSTALL"];	then

				rm	-f	"$PORT_CONFIG_FILE"

fi

exit	0

preupgrade:	There	is	nothing	to	do	in		preupgrade		in	this	example.	You	can	customize	your	own		preupgrade		script	for	upgrade
purpose.

#!/bin/sh

exit	0

postupgrade:	There	is	noting	to	do	in		postupgrade		in	this	example.	You	can	customize	your	own		postupgade		script	for	upgrade
purpose.

#!/bin/sh

exit	0

start-stop-status:	For		start-stop-status		in	this	example.	You	could	call	docker_inspect	to	see	if	your	container	is	running.

#!/bin/bash

GITLAB_NAME="GitLab"

DOCKER_INSPECT="/usr/local/bin/docker_inspect"

case	"$1"	in

				start)

								;;

				stop)

								;;

				status)

								"$DOCKER_INSPECT"	"$GITLAB_NAME"	|	grep	-q	"\"Status\":	\"running\","	||	exit	1

								;;

				log)

								echo	""

								;;

				*)

								echo	"Usage:	$0	{start|stop|status}"	>&2

								exit	1

								;;

esac

exit	0

Privilege:
The	following	is	the	privilege	file	under		conf		directory.	The	privilege	file	is	configuration	for	specifying	the	installation	and	run	time
privilege.	The	detail	of	privilege	will	be	elaborated	under	privilge	section.

Docker	package

160

{

				"defaults":	{

								"run-as":	"package"

				},

				"username":	"Gitlab"

}

`

Worker:
The	following	is	the	resource	file	under		conf		directory.	The	resource	file	are	configurations	for	calling	workers.	In	this	example,	since
docker	package	only	need	docker	worker	to	prepare	container	for	them,	we	write	docker	worker	configuration	for	setting	up	Gitlab
container.	For	more	details,	please	see	docker	worker.

{

				"docker":	{

								"services":	[{

												"service":	"gitlab",

												"image":	"gitlab/gitlab-ce",

												"container_name":	"GitLab",

												"tag":	"12.9.0-ce.0",

												"restart":	"always",

												"shares":	[{

																"host_dir":	"gitlab/data",

																"mount_point":	"/var/opt/gitlab"

												},	{

																"host_dir":	"gitlab/logs",

																"mount_point":	"/var/log/gitlab"

												},	{

																"host_dir":	"gitlab/config",

																"mount_point":	"/etc/gitlab"

												}],

												"ports":	[{

																"host_port":	"{{wizard_http_port}}",

																"container_port":	"80",

																"protocol":	"tcp"

												},	{

																"host_port":	"{{wizard_https_port}}",

																"container_port":	"443",

																"protocol":	"tcp"

												},	{

																"host_port":	"{{wizard_ssh_port}}",

																"container_port":	"22",

																"protocol":	"tcp"

												}]

								}]

				}

}

Build	and	Create	Package
Run	the	following	command	to	build	your	source	code	into	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	avoton	-c	docker-gitlab

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

Docker	package

161

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,	you
can	use	manual	install	in	Package	Center	to	install	your	package.

Docker	package

162

Compile	Web	Package	-	WordPress
This	chapter	will	use	well	known	open	source	project	-	WordPress	as	an	example	to	show	you	how	to	build	a	php	based	web	package
integrating	with	DSM	Packages	--	WebStation,	MariaDB	and	Apache	server.

WordPress	is	the	largest	self-hosted	blogging	Open	Source	Project	that	have	been	used	by	millions	of	websites.	All	it	need	is	a	PHP	web
server	and	a	database,	then	you	can	build	your	own	blogging	website.	In	this	example,	we	will	use	WebStation	and	Apache	as	web	server
to	host	WordPress,	and	use	MariaDB	as	database.	Once	the	website	was	setted	up,	you	could	modify	web	server	configurations	for
WordPress	via	WebStation	UI.

As	mentioned	before,	you	have	to	create	SynoBuildConf/build,	SynoBuildConf/install,	SynoBuildConf/depends	and	WordPress
source	project	before	creating	spk.	However,	since	WordPress	depends	on	PHP,	we	don't	have	to	compile	any	source	code.

Preparation:
First	you	need	to	download	WordPress	from	official	website	and	unarchive	it	into	your	spk	source	project.	In	this	example,	we	put	it
under	src	as	shown	in	Project	Layout.

Secondly,	before	installing	your	WordPress	spk,	you	need	to	download	the	dependant	packages	such	as	WebStation,	MariaDB,	PHP7.2
and	Apache2.2	in	DSM	from	Package	Center.	Noted	that	we	use	PHP7.2	and	Apache2.2	in	this	example,	you	can	choose	whatever	you
want	in	considering	your	circumstances.

Third,	according	to	instructions	from	WordPress	official	website,	you	have	to	setup	DB	information	for	WordPress.	For	more	details,
please	see	WordPress	-	how	to	install	wordpress.

Project	Layout:

/toolkit/source/wordpress_sample

├──	PACKAGE_ICON.PNG

├──	PACKAGE_ICON_256.PNG

├──	conf

│			├──	privilege

│			└──	resource

├──	INFO.sh

├──	Makefile

├──	scripts

│			├──	postinst

│			├──	postuninst

│			├──	postupgrade

│			├──	preinst

│			├──	preuninst

│			├──	preupgrade

│			├──	script_customized

│			└──	start-stop-status

├──	src

│			└──	wordpress

│							└──	wp-admin

├──	SynoBuildConf

│			├──	build

│			├──	depends

│			└──	install

└──	ui

				├──	Wordpress_120.png

				├──	Wordpress_16.png

				├──	Wordpress_24.png

				├──	Wordpress_256.png

				├──	Wordpress_32.png

				├──	Wordpress_48.png

				├──	Wordpress_64.png

				└──	Wordpress_72.png

Web	Package:	WordPress

163

https://wordpress.org/support/article/how-to-install-wordpress/

INFO.sh	(this	file	should	have	executable	permission:	chmod	+x
INFO.sh):

As	metioned	before,	we	will	use	INFO.sh	to	generate	the	INFO	file.	The	following	is	the	INFO.sh	file	for	this	example.	For	more	details
of	each	key's	purpose,	please	see	INFO.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

package="wordpress_sample"

.	"/pkgscripts-ng/include/pkg_util.sh"

version="5.5.1-1001"

os_min_ver="7.0-40337"

startstop_restart_services="nginx.service"

instuninst_restart_services="nginx.service"

install_dep_packages="WebStation>=3.0.0-0226:MariaDB10:PHP7.3>=7.3.16-0150:Apache2.2>=2.2.34-0104"

install_provide_packages="WEBSTATION_SERVICE"

maintainer="WordPress"

thirdparty="yes"

silent_upgrade="yes"

arch="noarch"

adminprotocol="http"

adminport="80"

adminurl="wordpress"

dsmuidir="ui"

["$(caller)"	!=	"0	NULL"]	&&	return	0

pkg_dump_info

SynoBuildConf/depends:

The	following	is	the	depends	file	for	this	example.

[default]

all="7.0"

SynoBuildConf/build:

The	following	is	the	build	file	for	this	example.	Since	WordPress	is	depends	on	PHP,	there	is	nothing	to	do	in	build.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

case	${MakeClean}	in

				[Yy][Ee][Ss])

								make	clean

								;;

esac

case	${CleanOnly}	in

				[Yy][Ee][Ss])

								return

								;;

esac

make	${MAKE_FLAGS}

Web	Package:	WordPress

164

SynoBuildConf/install:

The	following	is	the	install	file	for	this	example.	In	this	example,	we	install	our	package	with	the	help	of	Makefile.

#!/bin/bash

#	Copyright	(c)	2000-2022	Synology	Inc.	All	rights	reserved.

#	set	include	projects	to	install	into	this	package

INST_DIR="/tmp/_WordPress"						#	temp	folder	for	dsm	files

PKG_DIR="/tmp/_WordPress_pkg"			#	temp	folder	for	package	files

PKG_DEST="/image/packages"

#	prepare	install	and	package	dir

for	dir	in	$INST_DIR	$PKG_DIR;	do

				rm	-rf	"$dir"

done

for	dir	in	$INST_DIR	$PKG_DIR	$PKG_DEST;	do

				mkdir	-p	"$dir"	#	use	default	mask

done

make	INSTALLDIR=$INST_DIR	install

make	PACKAGEDIR=$PKG_DIR	package

.	"/pkgscripts-ng/include/pkg_util.sh"

pkg_make_package	$INST_DIR	$PKG_DIR

pkg_make_spk	$PKG_DIR	$PKG_DEST

Makefile:

The	following	is	the	Makefile	file	for	this	example.	Watch	out	the	indent	must	be	tab	instead	of	space.

WORDPRESSDIR=src

WORDPRESS_INSTALL_DIR=$(INSTALLDIR)/$(WORDPRESSDIR)

all	clean:

.PHONY:

install:

				[-d	$(INSTALLDIR)]	||	install	-d	$(INSTALLDIR)

				[-d	$(WORDPRESS_INSTALL_DIR)]	||	install	-d	$(WORDPRESS_INSTALL_DIR)

				cp	-a	$(WORDPRESSDIR)/*	$(WORDPRESS_INSTALL_DIR)

				[-d	$(INSTALLDIR)/ui]	||	install	-d	$(INSTALLDIR)/ui

				cp	-a	ui/*	$(INSTALLDIR)/ui

				#	change	owner	to	nobody	user/group	on	DS

				chown	-R	http:http	$(WORDPRESS_INSTALL_DIR)

INFO:	INFO.sh

				env	UISTRING_PATH=$(STRING_DIR)	./INFO.sh	>	INFO

package:	INFO

				[-d	$(PACKAGEDIR)]	||	install	-d	$(PACKAGEDIR)

				[-d	$(PACKAGEDIR)/scripts]	||	install	-d	$(PACKAGEDIR)/scripts

				cp	-a	scripts/*	$(PACKAGEDIR)/scripts

				chmod	755	$(PACKAGEDIR)/scripts/*

				cp	-a	PACKAGE_ICON.PNG	$(PACKAGEDIR)

				cp	-a	PACKAGE_ICON_256.PNG	$(PACKAGEDIR)

				cp	-a	conf	$(PACKAGEDIR)

				install	-c	-m	644	INFO	$(PACKAGEDIR)

clean:

Web	Package:	WordPress

165

Scripts	(these	files	should	have	executable	permission):

The	following	are	spk	scripts	for	installing	WordPress	spk	into	DSM.

preinst:	There	is	nothing	to	do	for		preinst		in	this	example.	You	can	customize	your	own		preinst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postinst:	In		postinst		stage,	we	move	the	source	project	into	"/var/services/web_packages"	since	it's	Web	Station's	working
directory.

#!/bin/sh

WEBSITE_ROOT="/var/services/web_packages/wordpress"

chown	-R	WordPress:http	"$WEBSITE_ROOT/*"

exit	0

preuninst:	There	is	nothing	to	do	in		preuninst		in	this	example.	You	can	customize	your	own		preuninst		script	to	fit	your
circumstances.

#!/bin/sh

exit	0

postuninst:	In		postuninst		stage,	we	remove	source	project	from	"/var/services/web_packages".

#!/bin/sh

exit	0

preupgrade:	There	is	nothing	to	do	in		preupgrade		in	this	example.	You	can	customize	your	own		preupgrade		script	for	upgrade
purpose.

#!/bin/sh

exit	0

postupgrade:	There	is	noting	to	do	in		postupgrade		in	this	example.	You	can	customize	your	own		postupgade		script	for	upgrade
purpose.

#!/bin/sh

exit	0

start-stop-status:	There	is	nothing	to	do	in		start-stop-status		in	this	example.	You	can	customize	your	own		start-stop-status	
script	by	following	the	template.

#!/bin/sh

case	"$1"	in

				start)

												exit	0

												;;

Web	Package:	WordPress

166

				stop)

												exit	0

												;;

				status)

												exit	0

												;;

				*)

												exit	1

												;;

esac

Privilege:
The	following	is	the	privilege	file	under		conf		directory.	The	privilege	file	is	configuration	for	specifying	the	installation	and	run	time
privilege.	The	detail	of	privilege	will	be	elaborated	under	privilge	section.

{

				"defaults":	{

								"run-as":	"package"

				},

				"username":	"WordPress",

				"join-groupname":	"http"

}

`

Worker:
The	following	is	the	resource	file	under		conf		directory.	The	resource	file	are	configurations	for	calling	workers.	In	this	example,	since
we	would	like	to	integrate	WordPress	with	WebStation,	we	will	call	WebStation's	worker	to	run	specific	setup	during	installation.	For
more	details,	please	see	webservice.

{

				"webservice":	{

								"services":	[{

												"service":	"wordpress",

												"display_name":	"WordPress",

												"support_alias":	true,

												"support_server":	true,

												"type":	"apache_php",

												"root":	"wordpress",

												"backend":	1,

												"icon":	"ui/Wordpress_{0}.png",

												"php":	{

																"profile_name":	"WordPress	Profile",

																"profile_desc":	"PHP	Profile	for	WordPress",

																"backend":	7,

																"open_basedir":	"/var/services/web_packages/wordpress:/tmp:/var/services/tmp",

																"extensions":	[

																				"mysql",

																				"mysqli",

																				"pdo_mysql",

																				"curl",

																				"gd",

																				"iconv"

],

																"php_settings":	{

																				"mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																				"mysqli.default_socket":	"mysqli.default_socket",

																				"pdo_mysql.default_socket":	"/run/mysqld/mysqld10.sock",

																				"display_errors":	"1",

																				"error_reporting":	"E_ALL",

																				"log_errors":	"true"

Web	Package:	WordPress

167

																},

																"user":	"WordPress",

																"group":	"http"

												},

												"connect_timeout":	60,

												"read_timeout":	3600,

												"send_timeout":	60

								}],

								"portals":	[{

												"service":	"wordpress",

												"type":	"alias",

												"name":	"wordpress",

												"alias":	"wordpress",

												"app":	"SYNO.SDS.WordPress"

								}],

								"pkg_dir_prepare":	[{

												"source":	"/var/packages/WordPress/target/src/wordpress",

												"target":	"wordpress",

												"mode":	"0755",

												"user":	"WordPress",

												"group":	"http"

								}]

				}

}

Build	and	Create	Package
Run	the	following	command	to	build	your	source	code	into	package.

/toolkit/pkgscripts-ng/PkgCreate.py	-p	avoton	-c	wordpress_sample

After	the	build	process,	you	can	check	the	result	in		/toolkit/result_spk	.

Verify	the	Result

If	the	building	process	was	successful,	you	will	see	that	the	.spk	file	has	been	placed	under	result_spk	folder.	To	test	the	spk	file,	you
can	use	manual	install	in	Package	Center	to	install	your	package.

WordPress	Installation	Note

user	need	to	create	database	manually	first	(by	using	phpmyadmin	or	something	else)
database	address	should	be	set	to		localhost:/run/mysqld/mysqld10.sock		if	you	are	using	db	root	user
if	you	see	error	pages	from	nginx,	you	might	need	to	disable	nginx	error	intercept	manually:

1.	 find	out	the	nginx	conf	of	wordpress

root@nas:/etc/nginx/conf.d#	grep	-R	'wordpress'	.

./.service.6522c657-36cf-4165-84ab-f9e271a712eb.60d1dcff-5b7f-4908-8890-fcfc19b333c8.conf:location	^~	/wordpress/	{

./.service.6522c657-36cf-4165-84ab-f9e271a712eb.60d1dcff-5b7f-4908-8890-fcfc19b333c8.conf:				location	^~	/wordpress

/	{

./www.webservice_portal_6522c657-36cf-4165-84ab-f9e271a712eb.conf:location	=	/wordpress	{

./www.webservice_portal_6522c657-36cf-4165-84ab-f9e271a712eb.conf:location	~	^/wordpress/	{

root@nas:/etc/nginx/conf.d#	cat	.service.6522c657-36cf-4165-84ab-f9e271a712eb.60d1dcff-5b7f-4908-8890-fcfc19b333c8.c

onf

location	^~	/wordpress/	{

	include	conf.d/.webstation.error_page.default.conf*;

	location	^~	/wordpress/	{

					proxy_connect_timeout	60s;

					proxy_read_timeout	3600s;

Web	Package:	WordPress

168

					proxy_send_timeout	60s;

					proxy_pass		http://localhost:914;

					proxy_set_header	X-Forwarded-By	$server_addr;

					proxy_set_header	X-Real-IP	$remote_addr;

					proxy_set_header	X-Forwarded-Proto	$scheme;

					proxy_set_header	X-Forwarded-Port	$server_port;

					proxy_set_header	Host	$http_host;

					proxy_set_header	Upgrade	$http_upgrade;

					proxy_http_version	1.1;

					proxy_intercept_errors	on;

	}

}

2.	 modify		proxy_intercept_errors		from	on	to	off	in	wordpress	nginx	conf

3.	 run		systemctl	reload	nginx		then	you	can	see	original	error	page	from	wordpress	now

Web	Package:	WordPress

169

Publish	Synology	Packages
Get	Started	with	Publishing
Submitting	the	Package	for	Approval
Responding	to	User	Issues

Publish	Synology	Packages

170

Get	Started	with	Publishing
To	publish	in	Synology	Package	Center	requires	a	few	simple	steps.	Here	is	how	to	do	it:

1.	 Apply	on	Synology	website	(https://www.synology.com/en-global/support/developer#apply).

2.	 Read	and	accept	the	Developer	Distribution	Agreement	and	Package	Developer	Guideline.	Note	that	packages	that	you	publish	on
Package	Center	must	comply	with	the	Terms	of	Service	in	Package	Center.

Please	note	that	the	package	quality	directly	influences	the	long-term	success	of	your	package	in	terms	of	installation,	online	reviews,
engagement,	and	user	retention.

Get	Started	with	Publishing

171

https://www.synology.com/en-global/support/developer#apply

Submitting	the	Package	for	Approval
Before	you	publish	your	package	in	Package	Center	and	distribute	it	to	users,	you	need	to	get	the	package	(the	SPK	file)	ready,	make
sure	you	have	test	it	internally,	and	prepare	your	promotion	materials	if	needed.	Please	see	the	below	before	submitting	your	package	to
us.

Confirm	Package	Behaviour

It	should	meet	our	package	review	items.	Please	refer	to	Package	review.

Free	or	Paid	Package

In	Package	Center,	you	can	publish	free	or	paid	packages.	Free	packages	can	be	downloaded	by	any	user	in	Package	Center.	Paid	apps
can	be	downloaded	only	by	users	who	have	a	registered	Synology	Account.

Deciding	whether	your	package	will	be	free	or	paid	is	important	because	free	packages	must	remain	free.

Once	your	package	is	published	as	a	free	one,	you	cannot	change	it	to	a	paid	package.
If	you	publish	your	package	as	a	paid	one,	you	can	change	it	to	free	at	any	time	(but	cannot	be	changed	back	to	paid).

Prepare	Screenshots
When	you	publish	in	Package	Center,	you	must	supply	a	variety	of	high-quality	screen-shots	to	showcase	your	package	or	brand.	After
you	publish,	they	will	appear	on	your	package	details	page,	or	elsewhere.	These	screen-shots	are	a	key	part	of	a	successful	package
details	page	that	will	attract	and	engage	users.	Therefore,	you	may	also	consider	hiring	a	professional	to	produce	them	for	you.

Submit	Your	Package
When	you	are	ready	to	publish,	go	to	Synology	website	(https://www.synology.com/en-global/support/developer#apply)	to	apply	your
package.

Make	sure	that:

Your	package	is	the	right	version.
You	provide	a	download	link	for	your	package.
You	provide	a	package	description	with	what	it	does.
You	provide	a	change	log	with	what	was	updated	in	this	version.
The	link	to	your	website	and	the	support	email	address	is	correct.
You	have	acknowledged	that	your	package	meets	the	Developer	Distribution	Agreement	and	also	the	Terms	of	Service	from
Package	Center.

We	will	have	a	completed	and	rigorous	internal	process	to	make	sure	the	quality	of	the	published	package.	There	are	four	major
processes	in	short:

1.	 Receive	your	package	and	release	note
2.	 Check	the	scripts	of	the	package
3.	 Verify	the	functions	of	the	package	on	different	major	versions	of	DSM	and	different	models.(Checklist)
4.	 Release	the	package	in	Package	Center.	In	the	verification	stage,	we	will	ask	you	to	provide	a	brief	operation	manual	and	test

scenario	for	testing.	If	there	are	any	issues,	we	will	feedback	to	your	teams	and	provide	the	related	information.	In	order	to	expedite
the	verification,	We	strongly	recommend	your	QC	should	verify	the	package	before	submitting	it.

Submitting	the	Package	for	Approval

172

https://www.synology.com/en-global/support/developer#apply
http://www.synology.com/company/terms_of_services.php?lang=enu

Submitting	the	Package	for	Approval

173

Responding	to	User	Issues
After	you	publish	a	package,	it	is	crucial	for	you	to	offer	support	to	your	customers.	Prompt	and	courteous	support	can	provide	a
better	experience	for	users,	which	can	result	in	more	downloads	and	more	positive	online	reviews	for	your	packages.	Users	are	more
likely	to	be	more	engaged	with	your	package	and	recommend	it	if	you	are	responsive	to	their	needs	and	feedback.

There	are	many	ways	that	you	can	keep	in	touch	with	users	and	offer	them	support.	The	most	common	way	is	to	provide	a	support
email	address	in	your	package	details	page.	You	can	also	provide	support	in	other	ways,	such	as	a	forum	or	a	mailing	list.	The	Synology
technical	support	team	provides	user	support	for	downloading,	installing	and	payments	issues,	but	issues	that	fall	outside	of	these
topics	will	fall	under	your	domain.	Examples	of	issues	you	can	support	include:	feature	requests,	questions	about	using	the	app	and
questions	about	compatibility	settings.

After	publishing,	please	plan	to:

Provide	a	link	to	your	support	resources	and	set	up	any	other	support	outlets	such	as	a	forum.
Provide	an	appropriate	support	email	address	on	your	package	detail	page	and	respond	to	users	when	they	email	you.
Acknowledge	and	fix	issues	with	your	package.	It	helps	to	be	transparent	and	list	known	issues	on	your	package	details	page
regularly.
Publish	updates	frequently,	without	sacrificing	quality	or	annoying	users	with	too-frequent	updates.
With	each	update,	make	sure	you	provide	a	summary	of	what	is	new.	Users	will	read	it	and	appreciate	that	you	are	serious	about
improving	the	quality	of	your	package.

Responding	to	User	Issues

174

Appendix	A:	Platform	and	Arch	Value	Mapping	Table
The	architecture	of	the	NAS	is	developed	upon	various	platforms	on	which	your	package	is	designed	and	needs	to	be	addressed	in	the
INFO	file	in	the	package.

In	the	below	table,	you	will	find	the	string	value	corresponding	to	the	platform	in	question.	For	example,	if	the	platform	of	your	NAS	is
Marvell	ARMADA	370,	armada370,	the	value	that	should	to	be	provided	as	a	pair	of	the	arch	key	is		armada370	.

Please	check	the	platforms	of	the	NAS	to	be	supported	and	refer	to	the	table	below	for	their	corresponding	string	values:

Arch
Family Member	platforms

noarch (all	platforms)

x86_64 apollolake,	avoton,	braswell,	broadwell,	broadwellnk,	broadwellntb,	broadwellntbap,	bromolow,	cedarview,
coffeelake,	denverton,	geminilake,	grantley,	kvmx64,	purley,	skylaked,	v1000

i686 evansport

armv7 alpine,	alpine4k

armv5 628x

armv8 rtd1296,	armada37xx,	rtd1619,	rtd1619b

Supported	platform	value	list:

alpine
alpine4k
apollolake
armada370
armada375
armada37xx
armada38x
armadaxp
avoton
braswell
broadwell
broadwellnk
broadwellntb
broadwellntbap
bromolow
cedarview
coffeelake
comcerto2k
denverton
evansport
geminilake
grantley
kvmx64
monaco
purley
rtd1296
rtd1619
rtd1619b
skylaked

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

175

v1000

You	can	check	the	"Package	Arch"	field	in	the	CPU	list	to	find	out	which	arch	does	your	NAS	belong	to.

Appendix	A:	Platform	and	Arch	Value	Mapping	Table

176

https://www.synology.com/en-us/knowledgebase/DSM/tutorial/Compatibility_Peripherals/What_kind_of_CPU_does_my_NAS_have

Compile	Applications
The	Synology	NAS	employs	embedded	SoC	or	x86-based	CPUs,	implementing	several	platforms	--	such	as	ARM	and	x86	--	on	a
variety	of	Synology	NAS	models.	In	order	to	run	3rd-party	applications	on	the	Synology	NAS,	it	is	necessary	to	compile	applications
into	an	executable	format	for	the	corresponding	platform.

This	information	will	help	you	determine	which	DSM	tool	chain	(please	refer	to	the	“Download	DSM	Tool	Chain”	section)	to
download	for	each	model.

Please	refer	to	What	kind	of	CPU	does	my	NAS	have	for	a	complete	model	list.

To	compile	an	application	for	the	Synology	NAS,	a	compiler	that	runs	on	Linux	PC	is	required	in	order	to	generate	an	executable	file	for
the	Synology	NAS.	This	compiling	procedure	is	called	cross-compiling,	and	the	set	of	compiling	tools	(compiler,	linker,	etc)	used	to
compile	the	application	is	called	a	tool	chain.

Appendix	B:	Compile	Applications	Manually

177

http://forum.synology.com/wiki/index.php/What_kind_of_CPU_does_my_NAS_have

Download	DSM	Tool	Chain
To	download	the	DSM	tool	chain,	please	go	to	Synology	Archive.

You	would	need	to	know	what	your	target	platform	is	to	download	the	corresponding	tool	chain.	Here	is	the	platform	list

If	you	are	not	sure	about	which	tool	chain	you	need,	please	execute	the	following	command	on	your	Synology	NAS.

DiskStation>	uname	-a

Linux	DiskStation	4.4.59+	#24922	SMP	PREEMPT	Mon	Aug	19	12:13:37	CST	2019	x86_64	GNU/Linux	synology_apollolake_718+

DiskStation>

The	output	"synology_apollolake_718+"	tells	you	which	tool	chain	is	appropriate.	For	example,	apollolake	means	you	need	the	tool
chain	for	"Intel	x86	Linux	4.4.59	(Apollolake)"	on	the	Synology	Archive.

After	you	download	the	DSM	tool	chain,	extract	it	to	where	you	want	it	on	your	computer.	For	the	following	instructions	we	will
extract	to	/usr/local/	as	an	example.	You	can	extract	the	tool	chain	by	using	the	following	command:

#	tar	xJf	apollolake-gcc493_glibc220_linaro_x86_64-GPL.txz	-C	/usr/local/

Please	make	sure	the	tool	chain	is	located	in	the	directory	/usr/local	on	your	computer	to	ensure	proper	integration.

Download	DSM	Tool	Chain

178

https://archive.synology.com/download/ToolChain
https://kb.synology.com/en-global/DSM/tutorial/What_kind_of_CPU_does_my_NAS_have
https://archive.synology.com/download/ToolChain

Compile
You	can	start	compiling	an	application	called	examplePkg.c”,	for	example,	that	looks	like	this:

#include	<sys/sysinfo.h>

int	main()

{

				struct	sysinfo	info;

				int	ret;

				ret	=	sysinfo(&info);

				if	(ret	!=	0)	{

								printf("Failed	to	get	system	information.\n");

								return	-1;

				}

				printf("Total	RAM:	%u\n",	info.totalram);

				printf("Free	RAM:	%u\n",	info.freeram);

				return	0;

}

To	compile	the	application,	run	the	following	command:

/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linux-gnueabigcc	examplePkg.c	–o	sysinfo

You	can	also	write	a	Makefile	for	it:

EXEC=	sysinfo

OBJS=	sysinfo.o

CC=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-gcc

LD=	/usr/local/arm-marvell-linux-gnueabi/bin/arm-marvell-linuxgnueabi-ld

CFLAGS	+=	-I/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/include

LDFLAGS	+=	-L/usr/local/arm-marvell-linux-gnueabi/arm-marvell-linuxgnueabi/libc/lib

all:	$(EXEC)

$(EXEC):	$(OBJS)

				$(CC)	$(CFLAGS)	$(OBJS)	-o	$@	$(LDFLAGS)

clean:

				rm	-rf	*.o	$(PROG)	*.core

Compile

179

Compile	Open	Source	Projects
To	compile	an	application	on	most	open	source	projects,	you	will	be	asked	to	execute	the	following	three	steps:

1.	 	configure	
2.	 	make	
3.	 	make	install	

The	configure	script	basically	consists	of	many	lines	which	are	used	to	check	details	about	the	machine	on	where	the	software	is	going	to
be	installed.	The	script	will	check	for	a	lot	of	dependencies	on	your	system.	When	you	run	the	configure	script,	you	will	see	a	lot	of
output	on	the	screen,	each	being	some	sort	of	question	with	a	respective	yes/no	reply.	If	there	are	any	major	requirements	missing	on
your	system,	the	configure	script	will	exit	and	you	will	not	be	able	to	proceed	with	the	installation	until	you	meet	all	the	requirements.
In	most	cases,	compile	applications	on	some	particular	target	machines	will	require	you	to	modify	the	configure	script	manually	to
provide	the	correct	values.

When	running	the	configure	script	to	configure	software	packages	for	cross-compiling,	you	will	need	to	specify	the		CC	,		LD	,		RANLIB	,
	CFLAGS	,		LDFLAGS	,		host	,		target	,	and		build	,	etc.	All	these	values	can	be	found	in		/env32.mak		or		/env64.mak		in	your	chroot
environment.	Some	examples	are	given	below.

For	Intel	X86-compatible	platform	in	DSM	7.0:

				env	CC=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu-wrap-gcc	\

				LD=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu-ld	\

				RANLIB=/usr/local/x86_64-pc-linux-gnu/bin/x86_64-pc-linux-gnu-ranlib	\

				CFLAGS="-DSYNOPLAT_F_X86_64	-O2	-include	/usr/syno/include/platformconfig.h	-DSYNO_ENVIRONMENT	-DBUILD_ARCH=64	-D_LARGEFIL

E64_SOURCE	-D_FILE_OFFSET_BITS=64	-g	-DSDK_VER_MIN_REQUIRED=600"	\

./configure	\

				--host=i686-pc-linux-gnu	\

				--target=i686-pc-linux-gnu	\

				--build=i686-pc-linux	\

				--prefix=/usr/local

Compile	Open	Source	Projects

180

Package	Review
We	are	excited	that	you	are	creating	packages	for	the	Synology	DSM	and	want	to	help	you	understand	our	guidelines	so	you	can	be
confident	your	package	will	get	through	the	review	process	quickly.

Review	Item Review	Guideline

INFO:	required	field Ensure	required	fields	in	INFO	exists

INFO:	deprecated	field Ensure	deprecated	fields	in	INFO	does	not	exist	(from	DSM7.0)

Lower	priviledge The	package	should	be	run	with	non-privileged	user	(from	DSM7.0)

Package	installation The	package	should	be	installed	successfully

Package	start The	package	should	be	started	successfully

Package	stop The	package	should	be	stopped	successfully

Package	upgrade The	package	should	be	upgraded	successfully

Package	uninstall The	package	should	be	uninstalled	successfully

Offline	installation The	package	should	be	able	to	be	installed	offline

Network	activity	during	installation There	should	not	be	any	abnormal	connection	during	installation

Security	advisor	scan The	package	should	not	cause	any	security	advisor	issue

Antivirus	essential	scan The	package	should	pass	the	virus	scanning

Clean	up/file	leftover Files	belong	to	package	should	be	removed	after	uninstallation

Clean	up/process	leftover Process	belong	to	package	should	be	stopped	after	uninstallation

Port-config Register	port	numbers	used	by	services	of	package

Port	conflict Registered	port	should	not	conflict	with	other	services

Error	log There	should	not	be	any	error	log	left	on	system

Apparmor	log There	should	not	be	any	deny	log	from	apparmor

Coredump	file There	should	not	be	any	coredump	file	left	on	system

Ad-hoc	test Check	any	other	abnormal	behavior

Appendix	C:	Publication	Review	&	Verification

181

https://www.synology.com/en-us/knowledgebase/DSM/help/DSM/SecurityScan/securityscan_desc

Components	List
Application
Button
Checkbox
Form
Input
Radio
Rich	Text
Select

Appendix	D:	UI	Framework

182

Appliation

DSM-Only	components

Usage

<template>

				<v-app-instance	syno-id="app-instance"	class-name="SYNO.SDS.XX.YY.Instance">

								<v-app-window

												syno-id="app-window"

												ref="appWindow"

												class="app-window-class"

												width=850

												height=574

												:resizable="false"

								>

												...

								</v-app-window>

				</v-app-instance>

</template>

Application

183

Button

Template
	<v-button	/>	

Button	API

Button	-	Props

Prop	name Description Type Values Default

subscribeField

Subscribe
specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register
on	form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and
will	change
behavior	when
enter	key	is
pressed

string - EnterHint.Enter

boundaryComponentName - string - 'PortalTarget'

iconType - string - ICON_TYPE.FOLLOW_MANAGER

type

Button	type.
Note:		split	
type	only
works	when
the		dropdown	
slot	is	not
empty.

string

	''	,
	'footbar'	,
	'dropdown'	,
	'styleless'	,
	'split'	,
	'border'	,
	'border-

dropdown'	,
	'border-

split'	,
	'footbar-

border'	,
	'footbar-

border-

dropdown'	,
	'welcome'	,
	'round'	,
	'round-

border'	

''

size - string - SIZE.NORMAL

display Button
display	type. string

	'text'	,
	'icon'	,
	'icon-text'	

'text'

suffix
Define	the
button	custom
suffix	class

string

	'grey'	,
	'blue'	,
	'cancel'	,
	'main'	,
	'green'	,
	'red'	,
	'orange'	

'grey'

Button

184

htmlType htmlType	of
the	button string

	'submit'	,
	'button'	,
	'reset'	

'button'

disabled
If	true,	the
button	will	be
disabled.

boolean - false

icon
Class	name
the	button's
icon	will	have.

string - void	0

menuAlign

Describe	how
the	dropdown
menu	should
be	aligned	to
the	button.
Example:
	tl->bl	

means	the
top-left	side
of	the	menu
will	be	stuck
to	the
bottom-left
side	of	the
button.

string

	'c'	,		't'	,
	'b'	,		'l'	,
	'r'	,		'tl'	,
	'tr'	,
	'bl'	,		'br'	

'tl->bl'

menuConstrainHeight

when	menu
height	is	out
of	popup
container,	it
will	contrain
menu	to	fixed
height

boolean - false

tooltip

Text	for	the
button's
tooltip.
If	false,	will
disable	it.

object\ string\ boolean -

dropdownOffset

Dropdown
menu's
position
offset

array - [0,	1]

useBreakpoint - boolean - true

name

Will	use	this
name	on
breakpoints
button	group

string - ''

mobileBreakpoint

Assign	the
breakpoint	of
button.
Less	or	equal
than	the
breakpoint
you	assigned,
	mobile		class
would	be
added	to	the
button's	class
list.

string\ boolean 	'xxxl'	,		'xxl'	,		'xl'	,		'lg'	,
	'md'	,		'sm'	,		'xs'	,		'xxs'	,		'xxxs'	 'xxs'

active

Only	works	in
button-group,
it	will	turns	to
active	state
when	you
pass		true	

boolean - false

Button

185

getExtraElements

customize
extra	elements
for	prevent
click	outside

func - void	0

Button	-	Methods

handleClick

Method	to	handle	click	behavior.

Param	name Type Description

evt EventObject -

setPressed

Remove	menuContainer	in	this	hook	(if	menuConatiner	is	created).

Param	name Type Description

pressed - -

Button	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur - -

dropdown-show value		Boolean		-	show/hide	of	the	dropdown Emitted	when	the	dropdown	menu	is	opened/closed.

dropdown-open value		Boolean		-	open/close	of	the	dropdown Emitted	when	dropdown	menu	is	opened

dropdown-close value		Boolean		-	open/close	of	the	dropdown Emitted	when	dropdown	menu	is	closed

click evt		EventObject		-	the	click	event	object Emitted	when	button	is	clicked.

click-dropdown item		Object		-	undefined Emitted	when	the	overflow	toolbar	item	has	been	clicked

Button	-	Slots

Name Description Bindings

icon icon	inside		<v-button>	 -

default content	inside		<v-button>	 -

dropdown Dropdown	content -

Button

186

Checkbox

Template
	<v-checkbox	/>	

Checkbox	API

Checkbox	-	Props

Prop	name Description Type Values Default

subscribeField
Subscribe	specific
	register-key		form-
item	on	ancestor

string - void	0

activeFormItem do	not	register	on
form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and	will
change	behavior	when
enter	key	is	pressed

string - EnterHint.Enter

boundaryComponentName - string - 'PortalTarget'

iconType - string - ICON_TYPE.FOLLOW_MANAGER

stopPropagation
If	true,	the	click	event
of	the	checkbox	will
stop	propagation.

boolean - false

v-model

If	true,	the	status	of
the	checkbox	will	be
checked.
Note:	Only	if
indeterminate	is	false

boolean - false

indeterminate

If	true,	the	status	of
the	checkbox	will
always	be
indeterminate	state.

boolean - false

disabled If	true,	the	checkbox
will	be	disabled. boolean - false

id ID	of	the	checkbox. string -
function()	{
return		syno-${this.uuid}	;
}

ariaLabelledby - string - function()	{	return	this.id;	}

name Name	of	the	checkbox. string - void	0

labelColor Color	of	label string 	'normal'	,
	'red'	

'normal'

Checkbox	-	Methods

onChange

Checkbox

187

Dispatch	an	event	(form.change),	first	triggering	it	on	the	instance	itself,	and	then	propagates	upward	along	the	parent	chain	until	finding
the	FormItem.

Param	name Type Description

event - -

onBlurInput

Dispatch	an	event	(form.blur),	first	triggering	it	on	the	instance	itself,	and	the	propagates	upward	along	the	parent	chain	until	finding	the
FormItem.

onClick

If	disabled	is	false,	run	onChange	function.

Param	name Type Description

e - -

Checkbox	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur component		this		-	the	checkbox	instance Emitted	when	checkbox	is	blurred.

input checked		Boolean		-	the	check	state	of	the	checkbox Emitted	when	checked	state	change.

change val		Boolean		-	the	check	state	of	the	checkbox
evt		EventObject		-	the	change	event	object Emitted	when	checked	state	change.

focus component		this		-	the	checkbox	instance Emitted	when	checkbox	is	focused.

Checkbox	-	Slots

Name Description Bindings

default Embed	default	slot	to	show	checkbox	label -

Checkbox

188

Form

Template

	<v-form	/>		and		<v-form-item	/>	

Form	Item	API

Form	Item	-	Props

Prop	name Description Type Values Default

prop See:	Pass	'prop'	to		<v-form-
item>		example string - void	0

label Label	content. string - void	0

disableLabel - boolean - false

disableDescription - boolean - false

validateDisabledField If	true,	the	form	will	validate
disabled	fields. boolean - false

disableValidation If	true,	the	form	won't	validate
all	the	field. boolean - false

hideValidateMessage If	true,	validation	message	won't
be	shown. boolean - false

hideValidateStatusCls If	true,	hide	status	when
validate	result	is	error boolean - false

rules

Validation	rules,	it	will	concat
form	rules	if	exists.
Visit	async-validator	for	more
details.

object\ array - void
0

help Text	for	validation	message. string - void	0

validateStatus Options:		['validating',
'success',	'warning',	'error']	. string - void	0

defaultValidateTrigger
when	rules	trigger	key	is	not
given,	it	will	use	this	value	as
default	trigger	timing

string - 'blur'

immediateValidate If	true,	it	will	instantly	validate
value	with	'change'	trigger	event boolean - false

showMessage If	true,	it	will	show	validation
message. boolean - true

hideLabel If	true,	it	won't	reserve	space
for	label. boolean - false

textonly If	true,	it	will	apply	display-
field	style. boolean - false

indent We	apply	css	variable	on		--
indent	

number\ string - 0

validateDebouncedTimer Debounce	milliseconds	for
validation. number - 250

Form

189

https://github.com/yiminghe/async-validator

registerKey
In	multiple	form-component
situation,	it	can	be	the	identify
key	for	form-component	to
register	on	it

string - void	0

validateMessageDisplayMode - string
	popup	,
	text	,
	form	

'form'

fixInitialValue - string - void	0

wrapperFlex - string\ number\ object - void
0

controlFlex - string\ number\ object - void
0

labelFlex - string\ number\ object - void
0

Form	Item	-	Methods

showPopup

show	popup	with	message.	if	message	is	not	defined	will	show	the	previous	message

Param	name Type Description

msg - -

hidePopup

hide	popup

validate

return		null		for	validated.
return		string		for	error	message.

|	Param	name	|	Type	|	Description	|	|	----------	|	------	|	-----------	|	|	trigger	|	string	|	trigger	|	|	options	|	object	|	options	|	|	extraRules	|
object	|	rule	|

|	Returns	Type	|	Description	|	|	-----------------	|	-----------	|	|	Promise	<string>		|	|

resetField

Reset	all	dirty	field	to	initial	value.

commit

Commit	changes.

resetInvalid

clear	validate	state	and	message

Form	Item	-	Events

Event	name Properties Description

validated validate		Object		-	payload Emitted	when	validated

Form

190

validating - -

Form	Item	-	Slots

Name Description Bindings

before Before	input	element -

label label	slot

label-before label	before	slot -

label-after label	after	slot -

default Input	fields	in	the	form -

status show	display	status	on	validate	message -

description - -

after After	input	element -

Form	Multiple	Item	API

Form	Multiple	Item	-	Props

Prop	name Description Type Values Default

label Label	content. string - void	0

disableLabel - boolean - false

hideLabel
If	true,	it	won't
reserve	space	for
label.

boolean - false

marginSize

The	margin
between	each
	<div>	

under		<v-form-
multiple-item>	

string 	small	,
	large	

'small'

indent
We	apply	css
variable	on		--
indent	

number\ string - 0

gap

space	between
grids,	could	be	a
number	or	a	object
or	array	represent
as	[horizontal,
vertical]
	{	xs:	5,	sm:	10,

md:	12,	xl:	[12,

24]	}	

object\ string\ array\ number -
()	=>
['6px',
'6px']

flexWrap flex	wrap	or	not object\ boolean - false

flexAlign - object\ boolean - void	0

flexJustify - object\ boolean - void	0

flex - string - FOLLOW_FORM

labelFlex - string\ number\ object - void
0

itemsWrapperFlex - string\ number\ object - void
0

Form

191

Form	Multiple	Item	-	Slots

Name Description Bindings

label label	slot -

label-before label	before	slot -

label-after label	after	slot -

default - -

Form	API

Form	-	Props

Prop	name Description Type Values Default

flex
open	flex	form
to	cover	mobile
layout,

boolean\ string - false

layoutOrder - number - 0

v-model Form	values. object - -

rules

Validation
rules.
Visit	async-
validator	for
more	details.

object - -

direction

Form	list
direction
Options:
	['horizontal',

'vertical']	

when	direction
is	adaptive,	it
will	choose
direction	by
breakpoint

object\ string -

()	=>	({
'xxs':
FORM_DIRECTION.VERTICAL,
'xxxl':
FORM_DIRECTION.HORIZONTAL
})

validateMessageDisplayMode - string 	popup	,
	text	

'popup'

Form	-	Methods

findField

The		name		attribute	of	HTML	Element

Param	name Type Description

name string -

Returns	Type Description

vnode 	vnode		of	the	field.

resetFields

Reset	all	dirty	field	to	initial	value.

Form

192

https://github.com/yiminghe/async-validator

validate

Is	all	fields	valid?

Param	name Type Description

trigger string -

Returns	Type Description

Promise\

validateField

Form	has	modified	field?

Param	name Type Description

prop - -

Returns	Type Description

Boolean

isDirty

Are	all	form-items	dirty

Returns	Type Description

Boolean

commit

Commit	changes.

Form	-	Events

Event	name Properties Description

submit event		EventObject		-	undefined Emitted	when	the	form	is	submitted.

validated validate		Object		-	payload Emitted	when	validated

Form	-	Slots

Name Description Bindings

default Input	fields	in	the	form -

Incremental	Form	Multiple	Item	API

Incremental	Form	Multiple	Item	-	Props

Prop	name Description Type Values Default

iconType - string - ICON_TYPE.FOLLOW_MANAGER

Form

193

label Label
content.

string - void	0

disableLabel - boolean - false

hideLabel

If	true,	it
won't
reserve
space	for
label.

boolean - false

indent
We	apply
css	variable
on		--
indent	

number - 0

items - array - []

minItemsLength - number - 0

maxItemsLength - number - void	0

addText - string -

function()	{
return	this._i18n('common',
'add_field');
}

disabledAddButton - boolean - void	0

disabledRemoveButton - boolean - false

gap - object\ string\ array -
()	=>
[FORM_BASIC_GAP,
FORM_BASIC_GAP]

columns
define	grid
columns
number

number - 24

labelFlex - string\ number\ object - void	0

itemsWrapperFlex - string\ number\ object - void	0

Incremental	Form	Multiple	Item	-	Events

Event	name Properties Description

update:items - -

remove-item - -

add-item - -

Incremental	Form	Multiple	Item	-	Slots

Name Description Bindings

label label	slot -

label-before label	before	slot -

label-after label	after	slot -

default - -

remove-field -

actions - -

Form

194

Form

195

Input

Template
	<v-input	/>	

Input	API

Input	-	Props

Prop	name Description Type Values Default

subscribeField

Subscribe
specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register
on	form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and
will	change
behavior	when
enter	key	is
pressed

string - EnterHint.Enter

boundaryComponentName - string - 'PortalTarget'

iconType - string - ICON_TYPE.FOLLOW_MANAGER

type

Type	of
input.
Options:
	['text',

'textarea',

'password']	

string - 'text'

id
The
component's
ID.

string -
function()	{
return		syno-${this.uuid}	;
}

v-model
The
component's
value.

string\ number - void	0

placeholder

Text	to	be
shown	when
the
component's
value	is
empty.

string\ number - ''

disabled

If	true,	the
component
will	be
disabled.

boolean - false

autosize

If	true,	the
component
will	be
autosized.

boolean\ object - false

See:

Input

196

strengthChecker 	Password	

example.
func\ boolean - false

mask See:		Mask	
example. RegExp\ func - null

numberOnly

If	true,	the
component
will	only
accept
number.

boolean - false

defaultShowStrengthChecker

If	true,	the
strength
checker	will
always	be
shown.

boolean - false

maxlength

Maximum
value	length
the
component
will	accept.

number - void	0

readonly

If	true,	the
component
will	be
readonly.

boolean - false

focusClass

Class	name
the
component
will	have
when	it's
being	focused.
If	false,	it
won't	get	any
additional
class	when
being	focused.

boolean\ string - 'focused'

disableHoverStyle

If	true,	the
component
won't	get	any
additional
class	whent
it's	being
hovered.

boolean - false

fitContainer

If	true,	you
can	assign	the
input	width
and	make
inner	content
to	fit	the
specified
width.
For	Example:
<v-input
class="my-
class"	fit-
container	/>
.my-class	{
width:	300px;
}

boolean - true

autocomplete

The
autocomplete
attribute	of
input

string - 'off'

show
password

Input

197

showPasswordVisibilityIcon visibility	icon
when	type	is
password

boolean - true

clearable show	clear
button boolean - false

selectOnFocus
select	text
when	focus	on
textfield

boolean - false

passwordPortalName - string -
()	=>	'password-portal'	+
String(Math.round(Math.random()	*
10000000))

passwordRules - array - []

mobileBreakpoint - string\ boolean - 'xxs'

Input	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur this		VueComponent		-	undefined
event		EventObject		-	undefined Emitted	when	input	is	blurred

input - Emitted	when	native	input	event	happened.

focus - -

strength-check strength		string		-	undefined
strengthText		string		-	undefined Emitted	when	strength	checker	is	visible.

paste event		EventObject		-	undefined Emitted	when	native	paste	event	is	triggered.

keyup event		EventObject		-	undefined Emitted	when	native	keyup	event	is	triggered.

keydown - -

clear event		EventObject		-	undefined Emitted	when	clear	button	is	clicked.

Input	-	Slots

Name Description Bindings

password-rule-header - -

suffix-icons content	as	input	suffix	icons -

prefix content	as	input	prefix,	will	not	work	in	textarea -

suffix content	as	input	suffix,	will	not	work	in	textarea -

Input

198

Radio

Template

	<v-radio	/>		and		<v-radio-group	/>	

Radio	Group	API

Radio	Group	-	Props

Prop	name Description Type Values Default

subscribeField
Subscribe	specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register	on
form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and	will
change	behavior
when	enter	key	is
pressed

string - EnterHint.Enter

boundaryComponentName - string - 'PortalTarget'

v-model

The		<v-
radio>		in	the
group	which	have
the	same	value	will
be	selected.

string\ number\ boolean - ''

data

The	radio-group
will	generate
	<v-radio>	s
by	referencing	this
prop.
Note:	This	prop
will	be	ignored	if
there	are	contents
in	the	slot.

RadioGroupData - []

disabled
If	true,	the	whole
group	will	be
disabled.

boolean - false

name Name	of	the
component. string -

function()	{
return		syno-
${this.uuid}	;
}

deactiveChildrenFormItems

deactive	all	children
form-items
This	will	prevent
single	radio	button
to	register	a	form-
item	which	should
be	radio-group	field

func\ boolean - ()	=>
vRadio

Radio	Group	-	Property

Radio

199

RadioGroupData

Attribute Type Required Default Description

text string false - Text	of	the	radio	button

value string true - Value	of	the	radio	button

disabled boolean false false If	true,	the	radio	button	will	be	disabled

Radio	Group	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur - -

input value	`string	\ number	\ boolean`	-	undefined Emitted	when	value	is	changed.

change value	`string	\ number	\ boolean`	-	undefined Emitted	when	value	is	changed.

Radio	Group	-	Slots

Name Description Bindings

default - -

Radio	API

Radio	-	Props

Prop	name Description Type Values Default

iconType - string - ICON_TYPE.FOLLOW_MANAGER

subscribeField

Subscribe
specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register
on	form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and
will	change
behavior	when
enter	key	is
pressed

string - EnterHint.Enter

boundaryComponentName - string - 'PortalTarget'

stopPropagation

If	true,	the
click	event	of
the	checkbox
will	stop
propagation.

boolean - false

value Value	of	this
radio-button. string\ number\ boolean - ''

Radio

200

v-model selected	value string\ number\ boolean - ''

disabled

If	true,	the
component
will	be
disabled.

boolean - false

id ID	of	the
component. string -

function()	{
return		syno-${this.uuid}	;
}

name Name	of	the
component. string - ''

labelColor Color	of	label string 	normal	,
	red	

'normal'

Radio	-	Events

Event
name Properties Description

focus-next-
field - -

focus-
prev-field - -

blur this		VueComponent		-
undefined

Emitted	when	the	component
is	blurred.

input value	`string	\ number	\ boolean`	-
undefined

Emitted	when	the	value	is
changed.

focus this		VueComponent		-
undefined

Emitted	when	the	component
is	focused.

click this		VueComponent		-
undefined

Emitted	when	the	component
is	clicked.

Radio	-	Slots

Name Description Bindings

default - -

Radio

201

Rich	Text

Template
	<v-rich-text	/>	

Rich	Text	API

Rich	Text	-	Props

Prop	name Description Type Values Default

parseTags - array - ['br',	'li',	'ul',	'ol',	'a',	'span',	'b',	'p ']

allowAttrs - array - []

linkTags - array - ['a',	'span']

text - string - ''

Rich	Text

202

Select	is	a	component	which	we	can	select	one	or	multiple	item.	It	can	also	be	used	as	seach	field	or	textfilter.	Must	use	v-model
to	set/get	its	value.

	<v-single-select	/>		and		<v-multiple-select	/>	

Select	Input	API

Select	Input	-	Props

Prop	name Description Type Values Default

iconType - string - ICON_TYPE.FOLLOW_MANAGER

clearIconCls - array - []

searchIconCls - array - []

allowClear - boolean - false

allowEdit - boolean - false

value - string - ''

inputTooltip - object - disabled:	true,

clearable
If	true,	there	will	be
a	clear	button	in	the
select.

boolean - false

hideTrigger

If	true,	the	arrow-
down	icon	at	the
right-side	of	the
select	will	be	hidden.

boolean - undefined

placeholder

The	placeholder
which	will	be	shown
when	no	option	is
selected.

string - ''

inputAttrs - object - ()	=>	{}

openDropdown - func - noop

toggleDropdown - func - noop

closeDropdown - func - noop

advanced - boolean - false

rightAdvanceIcon - boolean - false

displayField - string - 'label'

valueField - string - 'value'

triggerQueryAction - string - 'all'

autoOpenDropdownCharCount - number - -1

toggleDropdownOnClick - boolean - true

mode - string - 'normal'

selectedOption - object - -

displayTextFormat - object -

{
key:	void	0,
group:	'{group}:{option}',
option:	'{option}',

Select

203

delimiter:	',',
}

displayMode - string
	text	,
	none	,
	html	

'none'

groupOptions - object - -

enterKeyHint - string - void	0

disabled - boolean - false

Select	Input	-	Events

Event	name Properties Description

click-icon - -

click-advanced-icon - -

input - -

key-enter - -

key-esc - -

arrow-up - -

arrow-down - -

keydown - -

focus - -

blur - -

clear - -

Select	Input	-	Slots

Name Description Bindings

icon - -

clear-icon Place	to	put	your	custom	clear	icon -

dropdown-icon Custom	dropdown	icon -

right custom	search	icon -

Multiple	Select	Input	API

Multiple	Select	Input	-	Props

Prop	name Description Type Values Default

iconType - string - ICON_TYPE.FOLLOW_MANAGER

clearIconCls - array - []

searchIconCls - array - []

allowClear - boolean - false

allowEdit - boolean - false

Select

204

value - string - ''

inputTooltip - object - disabled:	true,

clearable

If	true,
there	will	be
a	clear
button	in
the	select.

boolean - false

hideTrigger

If	true,	the
arrow-down
icon	at	the
right-side	of
the	select
will	be
hidden.

boolean - undefined

placeholder

The
placeholder
which	will
be	shown
when	no
option	is
selected.

string - ''

inputAttrs - object - ()	=>	{}

openDropdown - func - noop

toggleDropdown - func - noop

closeDropdown - func - noop

advanced - boolean - false

rightAdvanceIcon - boolean - false

displayField - string - 'label'

valueField - string - 'value'

triggerQueryAction - string - 'all'

autoOpenDropdownCharCount - number - -1

toggleDropdownOnClick - boolean - true

mode - string - 'normal'

selectedOption - object - -

displayTextFormat - object -

{
key:	void	0,
group:	'{group}:{option}',
option:	'{option}',
delimiter:	',',
}

displayMode - string
	text	,
	none	,
	html	

'label'

groupOptions - object - -

enterKeyHint - string - void	0

disabled - boolean - false

selectedOptions - array - []

getOptionTooltip - func - -

Select

205

allowInvalidLabel - boolean - false

displayText - string\ boolean - false

labelEditable - boolean - false

Multiple	Select	Input	-	Events

Event	name Properties Description

click-icon - -

focus - -

blur - -

click-advanced-icon - -

input - -

key-enter - -

key-esc - -

arrow-up - -

arrow-down - -

keydown - -

clear - -

is-editing - -

item-removed \<anonymous1\>		undefined		-	undefined -

reposition-menu - -

commit - -

focus-out - -

focus-in - -

editing-label-input - -

Multiple	Select	Input	-	Slots

Name Description Bindings

icon - -

pre-label - -

clear-icon Place	to	put	your	custom	clear	icon -

dropdown-icon Custom	dropdown	icon -

right custom	search	icon -

Multiple	Select	API

Multiple	Select	-	Props

Prop	name Description Type Values Default

Subscribe

Select

206

subscribeField
specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register
on	form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and
will	change
behavior	when
enter	key	is
pressed

string - void	0

boundaryComponentName - string - 'PortalTarget'

iconType - string - ICON_TYPE.FOLLOW_MANAGER

v-model Selected
option's	value. array - []

id id	for	this
component. string -

function()	{
return		syno-${this.uuid}	;
}

name Name	for	this
select. string - ''

width
The
component's
width.

number\ string - 250

maxHeight
Max	height	of
the	dropdown
menu.

number\ string - 200

dropdownWidth Dropdown
menu's	width. string\ number - void

0

dropdownOffset
Dropdown
menu's	position
offset

array - [0,	1]

customDropdownCls

Class	names
which	the
dropdown
menu	will	have.

string - ''

disabled

If	true,	the
select
component	will
be	disabled.

boolean - false

filter

Custom	filter
function	which
will	be	called
when	trigger
search.
If	this	prop	is
provided,	the
default	filter
function	will	be
ignored.
Type:
`(display:
string,
currentOptions:
Options[],
queryAction:
'all'	\

'keyword')
=>
Options[]`

func - void
0

If	true,	the

Select

207

search

select	will
become	search
component.
See:	'Search'
example.

func - undefined

align

How	the
dropdown
menu	should	be
aligned.
Options:
	['c',	't',

'b',	'l',	'r',

'tl',	'tr',

'bl',	'br']	.
Example:		tl-
>bl		means
the	top-left
side	of	the
menu	will	be
stuck	to	the
bottom-left
side	of	the
select.

string - 'tl->bl'

minSearchChar

The	searching
function	of	the
component	will
be	triggered
only	if	the
length	of	input-
field's	value	is
larger	than	this
prop.

number\ string - 1

loadingText

Text	which	will
be	displayed
when
dropdown
menu	is	loading.

string -

function()	{
return	this._i18n('uicommon',
'searching');
}

notFoundText

The	text	which
will	be
displayed	when
no	item	is
found.

string -

function	()	{
return	this._i18n('search',
'no_search_result');
}

tooltip

If	true,	each
item	in	the
dropdown
menu	will	have
a	tooltip.

boolean - false

mapOptionToTooltip

Map	menu
option	to
tooltip's
content.
It	will	be	given
a	menu	option
as	param	and
should	return	a
string.
If	this	prop	is
not	provided,
then	the
tooltip's
content	will	be
option's
display	field.

func - null

A	function	will
will	be	called
before	the

Select

208

shouldMenuClose

dropdown
menu	close.
If	this	function
return	true,
then	the
dropdown
menu	won't	be
closed.

func - ()	=>	true

options

The	function
that	generate
options	for	the
component.
It	can	be	an
array	with
options	too.

object\ array - ()	=>
[]

groupOptions

when	you	use
options	as
object,	it	will
turns	to	use
grouped
options	to
display
and	you	can	use
this	props	to
specify	the
group	option	to
use
for	example:	if
options	has
been	given	by
	{	'objKey':	[{

label:	'Red',

value:	'red'	}]

}	

and	you	can	use
groupOptions:
	{	'objKey':	{

label:	'Group

String'	}	}		to
specify	the
display	string

object - ()	=>	{}

clearable

If	true,	there
will	be	a	clear
button	in	the
select.

boolean - true

editable Input	text	will
be	editable boolean - true

hideTrigger

If	true,	the
arrow-down
icon	at	the
right-side	of	the
select	will	be
hidden.

boolean - undefined

position

Positon
strategy	for	the
dropdown
menu.

string - 'absolute'

displayField Field	name	of
option	label string - 'label'

valueField Field	name	of
option	value string - 'value'

closeOnSelect

Close
dropdown
menu	when
user	click

boolean - false

Select

209

option

placeholder

The	placeholder
which	will	be
shown	when	no
option	is
selected.

string - ''

nullValue

The	Null	Value,
use	this	value	if
you	want	to	set
select	back	to
empty	state

string\ array - null

inputScrollable - boolean - false

inputTooltip - object - disabled:	true,

useOptionSlot - boolean\ string - void
0

triggerQueryAction

The	action	to
execute	when
the	trigger	is
clicked.	default
is	'all'
Options:
	['all',

'keyword']	

string - 'all'

caseSensitive

If	true,	when
the	component
is	editable,	the
comparison	will
be	case
sensitive.

boolean - false

virtualScrollbar

If	true,	this
component	will
use	virtual
scroll	into
dropdown

boolean - false

virtualItemHeight
virtual	scroll
info,	item
height	of	option

number - 28

virtualBufferSize Virtual	Scroll
buffer	size number - 200

showNotFound - boolean - true

showDropdown - boolean - true

displayTextFormat - object -

{
group:	'{group}:{option}',
option:	'{option}',
delimiter:	this._i18n('common',
'comma'),
}

displayMode labels	display
mode string

	label	,
	text	,
	none	

'label'

advanced - boolean\ object - false

searchIconActive

true	to
distinguish
advanced	search
conditions	are
set	in	advance
panel. boolean - false

Select

210

searchIconActive the	search	icon
would	separate
in	two	parts,
blue	for	search
icon,	grey	for
dropdown	icon.

boolean - false

defaultOption - object\ func\ string -

customIcon - string
	search	,
	filter	,
	custom	,
	none	

void	0

hideSelected

Decide	whether
hide	selected
item,	false	to
make	selected
item	visible.

boolean - false

height
The
component's
height.

number\ string - 'auto'

allowInvalidLabel - boolean - false

autoAddLabel allow	auto	add
label boolean\ object - false

editLabel
able	to	edit
label	which	is
selected

boolean - false

displayText - string\ boolean - false

Multiple	Select	-	Methods

setLoading

show	busy	status	on	search	dropdown

Param	name Type Description

status boolean -

Multiple	Select	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur - -

display-changed - -

dropdown-shown undefined		mixed		-	undefined Emitted	when	dropdown	shown.

dropdown-hidden undefined		mixed		-	undefined Emitted	when	dropdown	hidden.

is-active isActive		Boolean		-	undefined Emitted	when	the	select's	active	status	is	changed.

close-dropdown - -

click-icon - Emitted	when	icon	is	clicked.

Select

211

clear - -

input value		Array		-	undefined -

internal-select index		object		-	index	of	selected	option Triggers	when	the	option	is	clicked.

select opt		object		-	selected	option Triggers	when	the	option	is	clicked.

focus - -

item-removed \<anonymous1\>		undefined		-	undefined -

Multiple	Select	-	Slots

Name Description Bindings

input -

input-right - -

pre-label - -

default - -

Select	Action	Option	API

Select	Action	Option	-	Props

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

value - number\ string\ boolean - void
0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void
0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

customActiveBehavior

Custom	active	behavior,	If	true,	it	will
activated	only	when	passed	props	by
activated="true",	otherwise,	hover	and
mouse-out	will	trigger	activated	or	not

boolean - false

Select	Action	Option	-	Events

Select

212

Select	Action	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

mouseenter - -

hover-out - -

mouseleave - -

Select	Action	Option	-	Slots

Name Description Bindings

inner-option - -

Select	Check	Option	API

Select	Check	Option	-	Props

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

value - number\ string\ boolean - void	0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void	0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

Select	Check	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

Select

213

hover-out - -

mouseleave - -

toggle - -

Select	Check	Option	-	Slots

Name Description Bindings

inner-option - -

Select	Divider	Option	API

Select	Divider	Option	-	Props

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

value - number\ string\ boolean - void	0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void	0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

Select	Divider	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

mouseenter - -

hover-out - -

mouseleave - -

Select	Divider	Option	-	Slots

Name Description Bindings

Select

214

Name Description Bindings

inner-option - -

Select	Group	Option	API

Select	Group	Option	-	Props

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

value - number\ string\ boolean - void	0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void	0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

Select	Group	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

mouseenter - -

hover-out - -

mouseleave - -

Select	Group	Option	-	Slots

Name Description Bindings

inner-option - -

Select	Multiline	Option	API

Select	Multiline	Option	-	Props

Select

215

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

value - number\ string\ boolean - void	0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void	0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

Select	Multiline	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

mouseenter - -

hover-out - -

mouseleave - -

Select	Multiline	Option	-	Slots

Name Description Bindings

inner-option - -

title - -

desc - -

Select	No	Match	Option	API

Select	No	Match	Option	-	Props

Prop	name Description Type Values Default

id - string - void	0

option - object - -

display - string - void	0

Select

216

display - string - void	0

value - number\ string\ boolean - void	0

selectable - boolean - true

disabled - boolean - false

activated - boolean - false

customClass - array\ object\ string - void	0

isSelected - boolean - void	0

tooltip - boolean\ object - false

active - func - noop

hover - func - noop

hoverOut - func - noop

toggle - func - noop

Select	No	Match	Option	-	Events

Event	name Properties Description

active - -

click - -

hover - -

mouseenter - -

hover-out - -

mouseleave - -

Select	No	Match	Option	-	Slots

Name Description Bindings

inner-option - -

Single	Select	API

Single	Select	-	Props

Prop	name Description Type Values Default

subscribeField

Subscribe
specific
	register-key	

form-item	on
ancestor

string - void	0

activeFormItem do	not	register
on	form-item boolean - true

enterKey

used	for
	enterkeyhint	

attribute,	and
will	change
behavior	when
enter	key	is

string - void	0

Select

217

boundaryComponentName - string - 'PortalTarget'

iconType - string - ICON_TYPE.FOLLOW_MANAGER

v-model Selected
option's	value. array\ number\ string\ boolean

id id	for	this
component. string -

function()	{
return		syno-${this.uuid}	;
}

name Name	for	this
select. string - ''

width
The
component's
width.

number\ string - 250

maxHeight
Max	height	of
the	dropdown
menu.

number\ string - 200

dropdownWidth Dropdown
menu's	width. string\ number - void	0

dropdownOffset
Dropdown
menu's	position
offset

array - [0,	1]

customDropdownCls

Class	names
which	the
dropdown
menu	will	have.

string - ''

disabled

If	true,	the
select
component	will
be	disabled.

boolean - false

filter

Custom	filter
function	which
will	be	called
when	trigger
search.
If	this	prop	is
provided,	the
default	filter
function	will	be
ignored.
Type:
`(display:
string,
currentOptions:
Options[],
queryAction:
'all'	\

'keyword')
=>
Options[]`

func - void	0

search

If	true,	the
select	will
become	search
component.
See:	'Search'
example.

func - undefined

How	the
dropdown
menu	should	be
aligned.
Options:
	['c',	't',

'b',	'l',	'r',

'tl',	'tr',

'bl',	'br']	.

Select

218

align
'bl',	'br']	.
Example:		tl-
>bl		means
the	top-left
side	of	the
menu	will	be
stuck	to	the
bottom-left
side	of	the
select.

string - 'tl->bl'

minSearchChar

The	searching
function	of	the
component	will
be	triggered
only	if	the
length	of	input-
field's	value	is
larger	than	this
prop.

number\ string - 1

loadingText

Text	which	will
be	displayed
when
dropdown
menu	is	loading.

string -

function()	{
return	this._i18n('uicommon',
'searching');
}

notFoundText

The	text	which
will	be
displayed	when
no	item	is
found.

string -

function	()	{
return	this._i18n('search',
'no_search_result');
}

tooltip

If	true,	each
item	in	the
dropdown
menu	will	have
a	tooltip.

boolean - false

mapOptionToTooltip

Map	menu
option	to
tooltip's
content.
It	will	be	given
a	menu	option
as	param	and
should	return	a
string.
If	this	prop	is
not	provided,
then	the
tooltip's
content	will	be
option's
display	field.

func - null

shouldMenuClose

A	function	will
will	be	called
before	the
dropdown
menu	close.
If	this	function
return	true,
then	the
dropdown
menu	won't	be
closed.

func - ()	=>	true

options

The	function
that	generate
options	for	the
component. object\ array - ()	=>	[]

Select

219

array	with
options	too.

groupOptions

when	you	use
options	as
object,	it	will
turns	to	use
grouped
options	to
display
and	you	can	use
this	props	to
specify	the
group	option	to
use
for	example:	if
options	has
been	given	by
	{	'objKey':	[{

label:	'Red',

value:	'red'	}]

}	

and	you	can	use
groupOptions:
	{	'objKey':	{

label:	'Group

String'	}	}		to
specify	the
display	string

object - ()	=>	{}

clearable

If	true,	there
will	be	a	clear
button	in	the
select.

boolean - false

editable Input	text	will
be	editable boolean - undefined

hideTrigger

If	true,	the
arrow-down
icon	at	the
right-side	of	the
select	will	be
hidden.

boolean - undefined

position

Positon
strategy	for	the
dropdown
menu.

string - 'absolute'

displayField Field	name	of
option	label string - 'label'

valueField Field	name	of
option	value string - 'value'

closeOnSelect

Close
dropdown
menu	when
user	click
option

boolean - true

placeholder

The	placeholder
which	will	be
shown	when	no
option	is
selected.

string - ''

nullValue

The	Null	Value,
use	this	value	if
you	want	to	set
select	back	to
empty	state

string\ array - null

Select

220

inputScrollable - boolean - false

inputTooltip - object - disabled:	true,

useOptionSlot - boolean\ string - void	0

triggerQueryAction

The	action	to
execute	when
the	trigger	is
clicked.	default
is	'all'
Options:
	['all',

'keyword']	

string - 'all'

caseSensitive

If	true,	when
the	component
is	editable,	the
comparison	will
be	case
sensitive.

boolean - false

virtualScrollbar

If	true,	this
component	will
use	virtual
scroll	into
dropdown

boolean - false

virtualItemHeight
virtual	scroll
info,	item
height	of	option

number - 28

virtualBufferSize Virtual	Scroll
buffer	size number - 200

showNotFound - boolean - true

showDropdown - boolean - true

displayTextFormat - object -

{
group:	'{group}:{option}',
option:	'{option}',
delimiter:	this._i18n('common',
'comma'),
}

displayMode - string
	label	,
	text	,
	none	

'none'

advanced - boolean\ object - false

searchIconActive

true	to
distinguish
advanced	search
conditions	are
set	in	advance
panel.
the	search	icon
would	separate
in	two	parts,
blue	for	search
icon,	grey	for
dropdown	icon.

boolean - false

defaultOption - object\ func\ string -

customIcon - string
	search	,
	filter	,
	custom	,
	none	

void	0

Select

221

forceSelection
Force	select	last
valid	value	back
when	blur	with
editable	mode.

boolean - false

selectOnFocus
select	text	when
focus	on
textfield

boolean - true

Single	Select	-	Methods

setLoading

show	busy	status	on	search	dropdown

Param	name Type Description

status boolean -

Single	Select	-	Events

Event	name Properties Description

focus-next-field - -

focus-prev-field - -

blur - -

display-changed - -

dropdown-shown undefined		mixed		-	undefined Emitted	when	dropdown	shown.

dropdown-hidden undefined		mixed		-	undefined Emitted	when	dropdown	hidden.

is-active isActive		Boolean		-	undefined Emitted	when	the	select's	active	status	is
changed.

close-dropdown - -

click-icon - Emitted	when	icon	is	clicked.

click-advanced-
icon - Emitted	when	right	advanced	icon	is	clicked.

clear - -

input value		any		-	It	will	be	an	array	if		multiple		is
true. Emitted	when	selected	option	is	changed.

internal-select index		object		-	index	of	selected	option Triggers	when	the	option	is	clicked.

select opt		object		-	selected	option Triggers	when	the	option	is	clicked.

focus - -

Single	Select	-	Slots

Name Description Bindings

input -

icon -

input-right - -

advanced-menu - -

Select

222

advanced-panel - -

dropdown -

default - -

Select

223

	Package Developer Guide
	Release Notes
	Breaking Changes
	Getting Started
	System Requirements
	Prepare Envrionment
	Your First Package

	Synology Toolkit
	Build Stage
	Pack Stage
	Sign Package (only for DSM6.X)
	References

	Synology Package
	INFO
	Necessary Fields
	Optional Fields

	package.tgz
	UI files

	scripts
	Script Environment Variables
	Script Messages

	conf
	privilege
	resource
	PKG_DEPS
	PKG_CONX

	wizard
	WIZARD_UIFILES 7.2.2

	LICENSE

	Synology DSM Integration
	FHS
	Desktop Application
	Application Config
	Application Help
	Application I18N
	Application Authentication
	Privilege Config
	Resource Config
	Resource Timing
	Resource Update
	Resource List

	Port
	Monitor

	Package Examples
	Open Source Tool: tmux
	Open Source Tool: nmap
	Docker package
	Web Package: WordPress

	Publish Synology Packages
	Get Started with Publishing
	Submitting the Package for Approval
	Responding to User Issues

	Appendix A: Platform and Arch Value Mapping Table
	Appendix B: Compile Applications Manually
	Download DSM Tool Chain
	Compile
	Compile Open Source Projects

	Appendix C: Publication Review & Verification
	Appendix D: UI Framework
	Application
	Button
	Checkbox
	Form
	Input
	Radio
	Rich Text
	Select

